Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy=z;yz=4x;xz=9y\Rightarrow xy.yz.xz=z.4x.9y\Rightarrow\left(xyz\right)^2=36xyz\Rightarrow xyz=36\)
Đấy rồi bạn tự thay giá trị vào tìm ra x;y;z
b) Bài này chắc là rút gọn
\(\frac{2x+9}{x+3}+\frac{5x+17}{x+3}-\frac{3x}{x+3}=\frac{2x+9+5x+17-3x}{x+3}=\frac{4x+26}{x+3}=4+\frac{14}{x+3}\)
\(B=\frac{2x+8}{5}-\frac{x}{5}\)
\(B=\frac{2x+8-x}{5}=\frac{x+8}{5}\)
Để B có giá trị nguyên
=> x + 8 chia hết cho 5
=> x + 8 thuộc Ư(5) = {1 ; -1 ;5 ;-5}
thế x + 8 vô từng ước của 5 rồi tìm x nha
\(C=\frac{2x+9}{x+3}-\frac{5x+17}{x+3}-\frac{3x}{x+3}\)
\(C=\frac{2x+9-5x+17-3x}{x+3}=\frac{-6x+9+17}{x+3}=\frac{-6x+16}{x+3}\)
Để C có giá trị nguyên
=> -6x + 16 chia hết cho x +3
=> (-6). x + (-18) + 34 chia hết cho x + 3
=> (-6) . (x + 3) + 34 chia hết cho x + 3
=> 34 chia hết cho x +3
=> x + 3 thuộc Ư(34) = {-1 ; 1 ; -2 ; 2 ; -17 ; 17 ; -34 ;34}
còn lại giống bài đầu
c) \(\frac{2x+9}{x+3}-\frac{5x+17}{x+3}-\frac{3x}{x+3}=\frac{2x+9-5x-17-3x}{x+3}\)
\(=\frac{-6x-8}{x+3}=\frac{-2\left(3x+4\right)}{x+3}=-2.\frac{3x+9-5}{x+3}\)\(=-2.\frac{3x+9}{x+3}-\frac{5}{x+5}\)\(=-2.\frac{3\left(x+3\right)}{x+3}-\frac{5}{x+3}=-2.3-\frac{5}{x+3}=-6-\frac{5}{x+3}\)
Nói tương tự như câu a;
=> x+3 thuộc { -5; -1; 1; 5}
=> x thuộc { -8; -4; -2; 2}
a) \(\frac{x^2-3x+7}{x-3}=\)\(\frac{x\left(x-3\right)+7}{x-3}=\frac{x\left(x-3\right)}{x-3}+\frac{7}{x-3}=x+\frac{7}{x-3}\)
Do \(\frac{x^2-3x+7}{x-3}\in Z\)và x thuộc Z => \(\frac{7}{x-3}\in Z\)=> 7 chia hết cho x- 3 => x-3 thuộc Ư(7)
=> x-3 thuộc { -7; -1; 1; 7}
=> x thuộc { -4; 2; 4; 11}
b) \(\frac{x^2-1}{x-1}=\frac{\left(x+1\right)\left(x-1\right)}{x-1}=x+1\)
Vậy giá tị x thuộc số nguyên thì \(\frac{x^2-1}{x-1}\in Z\)( x khác -1)
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23