Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(2^x)^2-12*2^x+32=0
=>(2^x-4)(2^x-8)=0
=>x=3 hoặc x=2
a)
\(x^2-4x+4=25\)
\(\Leftrightarrow x^2-4x-21=0\)
\(\Leftrightarrow x^2+3x-7x-21=0\)
\(\Leftrightarrow x\left(x+3\right)-7\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b)
\(\dfrac{x-17}{1990}+\dfrac{x-21}{1986}+\dfrac{x+1}{1004}=4\)
\(\Leftrightarrow\dfrac{x-17}{1990}-1+\dfrac{x-21}{1986}-1+\dfrac{x+1}{1004}-2=4-1-1-2\)
\(\Leftrightarrow\dfrac{x-17-1990}{1990}+\dfrac{x-21-1986}{1986}+\dfrac{x+1-2008}{1004}=0\)
\(\Leftrightarrow\dfrac{x-2007}{1990}+\dfrac{x-2007}{1986}+\dfrac{x-2007}{1004}=0\)
\(\Leftrightarrow\left(x-2007\right)\left(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\right)=0\)
\(\Leftrightarrow x-2007=0\) ( Vì: \(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\ne0\))
\(\Leftrightarrow x=2007\)
c.
\(4^x-12.2^x+32=0\)
\(\Leftrightarrow\left(2^x\right)^2-12.2^x+36-4=0\)
\(\Leftrightarrow2^x-2.2^x.6+6^2-2^2=0\)
\(\Leftrightarrow\left(2^x-6\right)^2-2^2=0\)
\(\Leftrightarrow\left(2^x-6-2\right)\left(2^x-6+2\right)=0\)
\(\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2^x-8=0\\2^x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2^x=8\\2^x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
\(4^x-12.2^x+32=2^x.2^x+4.2^x-8.2^x+4.8\)
\(=2^x\left(2^x-4\right)-8\left(2^x-4\right)\)
\(=\left(2^x-8\right)\left(2^x-4\right)\)
4x - 12 . 2x + 32
= ( 2x )2 - 12 . 2x + 36 - 4
= ( 2x - 6 )2 - 22
= ( 2x - 8 ) ( 2x - 4 )
a) \(2x^4+3x^3-16x-24=0\)
\(\left(2x^4+3x^3\right)-\left(16x+24\right)=0\)
\(x^3.\left(2x+3\right)-8\left(2x+3\right)=0\)
\(\left(x^3-8\right)\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3-8=0\\2x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^3=8\\2x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-3}{2}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
X4 + X3 - X2 + X - 2 = 0
<=>x4-1+x3-x2+x-1=0
<=>(x2-1)(x2+1)+x2(x-1)+(x-1)=0
<=>(x-1)(x+1)(x2+1)+x2(x-1)+x(x-1)=0
<=>(x-1)(x3+x+x2+1+x2+x)=0
<=>(x-1)(x3+2x2+2x+1)=0
<=>(x-1)[(x+1)(x2-x+1)+2x(x+1)]=0
<=>(x-1)(x+1)(x2-x+1+2x)=0
<=>(x-1)(x+1)(x2+x+1)=0
vì x2+x+1=x2+2.x.1/2+1/4+3/4
=(x+1/2)2+3/4 > 0 với mọi x nên
x-1=0 hoặc x+1=0
<=>x=1 hoặc x=-1
\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(x^2-4\left(x-1\right)\right)=\left(x-1\right)\left(x-2\right)^2\)
c/ Coi lại đề
d/ \(x^{64}+2x^{32}+1-x^{32}=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2=\left(x^{32}-x^{16}+1\right)\left(x^{32}+x^{16}+1\right)\)
e/ \(x^4+6x^2+9-9x^2=\left(x^2+3\right)^2-\left(3x\right)^2=\left(x^2-3x+3\right)\left(x^2+3x+3\right)\)
\(4^x-12.2^x+32=0\)
⇒ \(2^x.2^x-4.2^x-8.2^x+4.8=0\)
⇒ \(2^x\left(2^x-4\right)-8\left(2^x-4\right)=0\)
⇒ \(\left(2^x-4\right)\left(2^x-8\right)=0\)
⇒ \(\left[{}\begin{matrix}2^x-4=0\\2^x-8=0\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}2^x=2^2\\2^x=2^3\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)