K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

\(4^x-12.2^x+32=0\)

\(2^x.2^x-4.2^x-8.2^x+4.8=0\)

\(2^x\left(2^x-4\right)-8\left(2^x-4\right)=0\)

\(\left(2^x-4\right)\left(2^x-8\right)=0\)

\(\left[{}\begin{matrix}2^x-4=0\\2^x-8=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}2^x=2^2\\2^x=2^3\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

=>(2^x)^2-12*2^x+32=0

=>(2^x-4)(2^x-8)=0

=>x=3 hoặc x=2

14 tháng 4 2018

a)

\(x^2-4x+4=25\)

\(\Leftrightarrow x^2-4x-21=0\)

\(\Leftrightarrow x^2+3x-7x-21=0\)

\(\Leftrightarrow x\left(x+3\right)-7\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

b)

\(\dfrac{x-17}{1990}+\dfrac{x-21}{1986}+\dfrac{x+1}{1004}=4\)

\(\Leftrightarrow\dfrac{x-17}{1990}-1+\dfrac{x-21}{1986}-1+\dfrac{x+1}{1004}-2=4-1-1-2\)

\(\Leftrightarrow\dfrac{x-17-1990}{1990}+\dfrac{x-21-1986}{1986}+\dfrac{x+1-2008}{1004}=0\)

\(\Leftrightarrow\dfrac{x-2007}{1990}+\dfrac{x-2007}{1986}+\dfrac{x-2007}{1004}=0\)

\(\Leftrightarrow\left(x-2007\right)\left(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\right)=0\)

\(\Leftrightarrow x-2007=0\) ( Vì: \(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\ne0\))

\(\Leftrightarrow x=2007\)

14 tháng 4 2018

c.

\(4^x-12.2^x+32=0\)

\(\Leftrightarrow\left(2^x\right)^2-12.2^x+36-4=0\)

\(\Leftrightarrow2^x-2.2^x.6+6^2-2^2=0\)
\(\Leftrightarrow\left(2^x-6\right)^2-2^2=0\)

\(\Leftrightarrow\left(2^x-6-2\right)\left(2^x-6+2\right)=0\)

\(\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2^x-8=0\\2^x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2^x=8\\2^x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

7 tháng 10 2020

\(4^x-12.2^x+32=2^x.2^x+4.2^x-8.2^x+4.8\)

\(=2^x\left(2^x-4\right)-8\left(2^x-4\right)\)

\(=\left(2^x-8\right)\left(2^x-4\right)\)

8 tháng 10 2020

4x - 12 . 2x + 32

= ( 2x )2 - 12 . 2x + 36 - 4

= ( 2x - 6 )2 - 22

= ( 2x - 8 ) ( 2x - 4 )

16 tháng 1 2018

a) \(2x^4+3x^3-16x-24=0\)

\(\left(2x^4+3x^3\right)-\left(16x+24\right)=0\)

\(x^3.\left(2x+3\right)-8\left(2x+3\right)=0\)

\(\left(x^3-8\right)\left(2x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3-8=0\\2x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^3=8\\2x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-3}{2}\end{cases}}\)

vậy \(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)

7 tháng 1 2017

\(t^3+32t-12=0\)xem lại đề thôi

11 tháng 7 2015

X4 + X3 - X2 + X - 2 = 0

 <=>x4-1+x3-x2+x-1=0

<=>(x2-1)(x2+1)+x2(x-1)+(x-1)=0

<=>(x-1)(x+1)(x2+1)+x2(x-1)+x(x-1)=0

<=>(x-1)(x3+x+x2+1+x2+x)=0

<=>(x-1)(x3+2x2+2x+1)=0

<=>(x-1)[(x+1)(x2-x+1)+2x(x+1)]=0

<=>(x-1)(x+1)(x2-x+1+2x)=0

<=>(x-1)(x+1)(x2+x+1)=0

vì x2+x+1=x2+2.x.1/2+1/4+3/4

=(x+1/2)2+3/4 > 0 với mọi x nên

x-1=0 hoặc x+1=0

<=>x=1 hoặc x=-1

NV
25 tháng 6 2019

\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(x^2-4\left(x-1\right)\right)=\left(x-1\right)\left(x-2\right)^2\)

c/ Coi lại đề

d/ \(x^{64}+2x^{32}+1-x^{32}=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2=\left(x^{32}-x^{16}+1\right)\left(x^{32}+x^{16}+1\right)\)

e/ \(x^4+6x^2+9-9x^2=\left(x^2+3\right)^2-\left(3x\right)^2=\left(x^2-3x+3\right)\left(x^2+3x+3\right)\)