Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
a, <=> (x-2)2=25
<=>x-2=5 hoặc x-2=-5
<=>x=7 hoặc x=-3
c,<=>(x2)2-16=0
<=>(x2)2=16
<=>x2=4
<=>x=2 hoặc x=-2
Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick
\(\dfrac{x+1}{2008}+\dfrac{x+2}{2007}+\dfrac{x+3}{2006}=\dfrac{x+4}{2005}+\dfrac{x+5}{2004}+\dfrac{x+6}{2003}\)
⇔\(\dfrac{x+1}{2008}+1+\dfrac{x+2}{2007}+1+\dfrac{x+3}{2006}+1=\dfrac{x+4}{2005}+1+\dfrac{x+5}{2004}+1+\dfrac{x+6}{2003}+1\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}=\dfrac{x+2009}{2005}+\dfrac{x+2009}{2004}+\dfrac{x+2009}{2003}\)
⇔ \(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}-\dfrac{x+2009}{2005}-\dfrac{x+2009}{2004}-\dfrac{x+2009}{2003}=0\)
⇔ \(\left(x+2009\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}-\dfrac{1}{2005}-\dfrac{1}{2004}-\dfrac{1}{2003}\right)=0\)
⇔ x+2009=0
⇔ x=-2009
vậy x=-2009 là nghiệm của pt
a) ( x2 + x )2 + 4( x2 + x ) = 12
<=> ( x2 + x )2 + 4( x2 + x ) + 4 - 16 = 0
<=> ( x2 + x + 2)2 - 16 = 0
<=> ( x2 + x + 2 + 4)( x2 + x + 2 - 4) = 0
<=> ( x2 + x + 6 )( x2 + x - 2) = 0
Do : x2 + x + 6
= x2 + 2.\(\dfrac{1}{2}x+\dfrac{1}{4}+6-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\) ≥ \(\dfrac{23}{4}\) > 0 ∀x
=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1) + 2( x - 1) = 0
<=> ( x - 1)( x + 2 ) = 0
<=> x = 1 hoặc : x = - 2
KL.....
b) Kuroba kaito làm rùi nhé
bài 1:
b,\(\dfrac{x+2}{x}=\dfrac{x^2+5x+4}{x^2+2x}+\dfrac{x}{x+2}\)(ĐKXĐ:x ≠0,x≠-2)
<=>\(\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x^2+5x+4}{x\left(x+2\right)}+\dfrac{x^2}{x\left(x+2\right)}\)
=>\(x^2+4x+4=x^2+5x+4+x^2\)
<=>\(x^2-x^2-x^2+4x-5x+4-4=0\)
<=>\(-x^2-x=0< =>-x\left(x+1\right)=0< =>\left[{}\begin{matrix}x=0\left(loại\right)\\x+1=0< =>x=-1\left(nhận\right)\end{matrix}\right.\)
vậy...............
d,\(\left(x+3\right)^2-25=0< =>\left(x+3-5\right)\left(x+3+5\right)=0< =>\left(x-2\right)\left(x+8\right)=0< =>\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
vậy............
bài 3:
g,\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-x-2}\)(ĐKXĐ:x khác -1,x khác 2)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x^2-2x+x-2}\)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{x\left(x-2\right)+\left(x-2\right)}\)
<=>\(\dfrac{4}{x+1}-\dfrac{2}{x-2}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
<=>\(\dfrac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)
=>\(4x-8-2x-2=x+3\)
<=>\(x=13\)
vậy..............
mấy ý khác bạn làm tương tụ nhé
chúc bạn học tốt ^ ^
b) \(\dfrac{3}{4}xy+\dfrac{3}{4}x^2y-\dfrac{3}{4}xy^2\Leftrightarrow\dfrac{3}{4}xy+\dfrac{3}{4}xy\left(x-y\right)\Leftrightarrow\dfrac{3}{4}xy\left(x-y+1\right)\)
c) \(x\left(x-2\right)+y\left(2-x\right)\Leftrightarrow x\left(x-2\right)-y\left(x-2\right)=\left(x-y\right)\left(x-2\right)\)
d) \(x\left(3-2x\right)+6-4x\Leftrightarrow x\left(3-2x\right)+2\left(3-2x\right)\Leftrightarrow\left(x+2\right)\left(3-2x\right)\)
a: \(\Leftrightarrow5\left(x+1\right)\left(x-1\right)=2x-2-3x-3=-x-5\)
\(\Leftrightarrow5x^2-5+x+5=0\)
=>x(5x+1)=0
=>x=0 hoặc x=-1/5
b: \(\Leftrightarrow x^2-x-\left(2x-3\right)\left(x+1\right)=2x+3\)
\(\Leftrightarrow x^2-x-2x^2-2x+3x+3=2x+3\)
\(\Leftrightarrow-x^2+3=2x+3\)
=>-x(x+2)=0
=>x=0(nhận) hoặc x=-2(nhận)
c: \(\Leftrightarrow4x^2-25=0\)
=>(2x-5)(2x+5)=0
=>x=5/2 hoặc x=-5/2
a)
\(x^2-4x+4=25\)
\(\Leftrightarrow x^2-4x-21=0\)
\(\Leftrightarrow x^2+3x-7x-21=0\)
\(\Leftrightarrow x\left(x+3\right)-7\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
b)
\(\dfrac{x-17}{1990}+\dfrac{x-21}{1986}+\dfrac{x+1}{1004}=4\)
\(\Leftrightarrow\dfrac{x-17}{1990}-1+\dfrac{x-21}{1986}-1+\dfrac{x+1}{1004}-2=4-1-1-2\)
\(\Leftrightarrow\dfrac{x-17-1990}{1990}+\dfrac{x-21-1986}{1986}+\dfrac{x+1-2008}{1004}=0\)
\(\Leftrightarrow\dfrac{x-2007}{1990}+\dfrac{x-2007}{1986}+\dfrac{x-2007}{1004}=0\)
\(\Leftrightarrow\left(x-2007\right)\left(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\right)=0\)
\(\Leftrightarrow x-2007=0\) ( Vì: \(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\ne0\))
\(\Leftrightarrow x=2007\)
c.
\(4^x-12.2^x+32=0\)
\(\Leftrightarrow\left(2^x\right)^2-12.2^x+36-4=0\)
\(\Leftrightarrow2^x-2.2^x.6+6^2-2^2=0\)
\(\Leftrightarrow\left(2^x-6\right)^2-2^2=0\)
\(\Leftrightarrow\left(2^x-6-2\right)\left(2^x-6+2\right)=0\)
\(\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2^x-8=0\\2^x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2^x=8\\2^x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)