\(\dfrac{1}{x^2}\)) : (x2 + \(\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

27 tháng 6 2018

Mk xin lỗi nha, câu c sai đề

c) (x+6)4 + (x+8)4 = 272

27 tháng 3 2017

Ta có: 8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)^2\)\(\left(x+\dfrac{1}{x}\right)^2\)=(x+4)2

ĐKXĐ: x khác 0

<=>8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)\)\(\left(x^2+\dfrac{1}{x^2}-x^2-2-\dfrac{1}{x^2}\right)\)=(x+4)2

<=>8\(\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

<=>8\(\left(x^2+2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}\right)\)=(x+4)2

=>(x+4)2=16

Vậy có 2 TH:

+) x+4=4 => x=0(KTMĐKXĐ)

+)x+4=-4 => x=-8(TMĐKXĐ)

Vậy tập nghiệm của phương trình S={-8}

27 tháng 3 2017

???

2: \(\Leftrightarrow\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)=2\left(x-1\right)\left(x+1\right)\)

=>x^2-3x-4+x^2+3x-4=2x^2-2

=>2x^2-8=2x^2-2(loại)

3: \(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)+x^2\left(x+3\right)=-7x^2+3x\)

=>x^3-3x^2-x^2+3x+x^3+3x^2+7x^2-3x=0

=>2x^3+6x^2=0

=>2x^2(x+3)=0

=>x=0(nhận) hoặc x=-3(loại)

13 tháng 4 2018

\(\dfrac{x+1}{2008}+\dfrac{x+2}{2007}+\dfrac{x+3}{2006}=\dfrac{x+4}{2005}+\dfrac{x+5}{2004}+\dfrac{x+6}{2003}\)

\(\dfrac{x+1}{2008}+1+\dfrac{x+2}{2007}+1+\dfrac{x+3}{2006}+1=\dfrac{x+4}{2005}+1+\dfrac{x+5}{2004}+1+\dfrac{x+6}{2003}+1\)

\(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}=\dfrac{x+2009}{2005}+\dfrac{x+2009}{2004}+\dfrac{x+2009}{2003}\)

\(\dfrac{x+2009}{2008}+\dfrac{x+2009}{2007}+\dfrac{x+2009}{2006}-\dfrac{x+2009}{2005}-\dfrac{x+2009}{2004}-\dfrac{x+2009}{2003}=0\)

\(\left(x+2009\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}-\dfrac{1}{2005}-\dfrac{1}{2004}-\dfrac{1}{2003}\right)=0\)

⇔ x+2009=0

⇔ x=-2009

vậy x=-2009 là nghiệm của pt

13 tháng 4 2018

a) ( x2 + x )2 + 4( x2 + x ) = 12

<=> ( x2 + x )2 + 4( x2 + x ) + 4 - 16 = 0

<=> ( x2 + x + 2)2 - 16 = 0

<=> ( x2 + x + 2 + 4)( x2 + x + 2 - 4) = 0

<=> ( x2 + x + 6 )( x2 + x - 2) = 0

Do : x2 + x + 6

= x2 + 2.\(\dfrac{1}{2}x+\dfrac{1}{4}+6-\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\)\(\dfrac{23}{4}\) > 0 ∀x

=> x2 + x - 2 = 0

<=> x2 - x + 2x - 2 = 0

<=> x( x - 1) + 2( x - 1) = 0

<=> ( x - 1)( x + 2 ) = 0

<=> x = 1 hoặc : x = - 2

KL.....

b) Kuroba kaito làm rùi nhé hihi

21 tháng 8 2017

\(e,\)

\(\left(\dfrac{1}{3}a^3b+\dfrac{1}{3}a^2b^2-\dfrac{1}{4}ab^3\right):5ab\)

\(=\dfrac{1}{15}a^2+\dfrac{1}{15}ab-\dfrac{1}{20}b^2\)

\(f,\)

\(\left(-\dfrac{2}{3}x^5y^2+\dfrac{3}{4}x^4y^3-\dfrac{4}{5}x^3y^4\right):6x^2y^2\)

\(=-\dfrac{1}{9}x^3+\dfrac{1}{8}x^2y-\dfrac{2}{15}xy^2\)

\(g,\)

\(\left(\dfrac{3}{4}a^6b^3+\dfrac{6}{5}a^3b^4-\dfrac{5}{10}ab^5\right):\left(\dfrac{3}{5}ab^3\right)\)

\(=\dfrac{5}{4}a^5+2a^2b-\dfrac{5}{6}b^2\)

21 tháng 8 2017

cam on

a: \(=\dfrac{\left(2\cdot547+1\right)\cdot3}{547\cdot211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)

\(=\dfrac{2735}{547\cdot211}=\dfrac{5}{211}\)

b: x=7 nên x+1=8

\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)

\(=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-x^{12}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}-...-x^3-x^2+x^2+x-5\)

=x-5=7-5=2

a)Đặt \(A=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2+\dfrac{3}{2}x-1\)

\(A=\dfrac{1}{8}\left(x^3-6x^2+12x-8\right)\)

\(A=\dfrac{1}{8}\left(x-2\right)^3\)

8 tháng 5 2018

b,\(x^4+2015x^2+2014x+2015=x^4+2015x^2+2015x-x+2015=x\left(x^3-1\right)+2015\left(X^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)