
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)
=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d
=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d
=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d
=> (18n + 8) - (18n - 9) chia hết cho d
=> 18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d
Mà \(d\in\)N* => \(d\in\left\{1;17\right\}\)
+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17
=> 2n - 1 + 17 chia hết cho 17; 9n + 4 + 68 chia hết cho 17
=> 2n + 16 chia hết cho 17; 9n + 72 chia hết cho 17
=> 2.(n + 8) chia hết cho 17; 9.(n + 8) chia hết cho 17
Do (2;17)=1; (9;17)=1 => n + 8 chia hết cho 17
=> n = 17k + 9 (k thuộc N)
Vậy với \(n\ne17k+9\)(k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1
Với n = 17k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N)
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17
Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N)
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1) ⋮ d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17 ⋮ d ⇒ d ∈ {1, 17}.
Ta có 2n - 1 ⋮ 17 ⇔ 2n - 18 ⋮ 17 ⇔ 2(n - 9) ⋮ 17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9 ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9 (k ∈ N )
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
Vậy ƯCLN(2n - 1 ; 9n + 4) = 17

c) Gọi d là ƯCLN(n; n+2)
=> n chia hết cho d
=> n+2 chia hết cho d
<=> n+2 -n chia hết cho d
=> 2 chia hết cho d
=> d=1 hoăc d=2
=> ƯCLN(n;n+2) là 2
Vậy...

gọi d thuộc ƯC(n(n+1)/2 ; 2n+1) với d thuộc N*
=>n(n+1)/2 chia hết cho d hay n.(n+1) chia hết cho d và 2n+1 chia hết cho d
=>n(2n+1)-n(n+1) chia hết cho d
=>2n^2+n-n^2+n chia hết cho d =>n^2+(n^2+n-n^2+n) chia hết cho d
=>n^2 chia hết cho d
TỪ n.(n+1)=n^2+n chia hết cho d và n^2 chia hết cho d =>n chia hết cho d
Ta lại có 2n+1 chia hết cho d,mà n chia hết cho d=> 2n chia hết cho d =>1 chia hết cho d =>d=1

Gọi ƯCLN(2n+1,2n+3) là d
Ta có 2n+1 chia hết cho d
2n+3 chia hết cho d
=>2n+3-2n-1 chia hết cho d
thiếu nha
=> 2chia hết cho d
=> d thuộc Ư(2)={1,2}
Vì 2n+1 và 2n+3 là 2 số lẻ liên tiếp nên ước ko thể bằng 2
=> d=1
Vậy ƯCLN(2n+1,2n+3) là 1
Đặt \(d=\left(2n-1,9n+4\right)\).
Suy ra \(\hept{\begin{cases}2n-1⋮d\\9n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9\left(2n-1\right)⋮d\\2\left(9n+4\right)⋮d\end{cases}}\Rightarrow2\left(9n+4\right)-9\left(2n-1\right)=17⋮d\).
Suy ra \(d=1\)hoặc \(d=17\).