Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 2n+1 và 3n+1
Ta có:\(2n+1⋮d\Rightarrow3\left(2n+1\right)=6n+3⋮d\)
\(3n+1⋮d\Rightarrow2\left(3n+1\right)=6n+2⋮d\)
\(\Rightarrow\left(6n+3\right)+\left(6n+2\right)=1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
Vậy 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...
Bài 1 :
Ta có :
\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)
Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n
Chúc bạn học tốt ~
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.
Thật vậy, nếu \(d\inƯC\left(2n+1,2n+3\right)\) suy ra:
\(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\) => \(\left[\left(2n+3\right)-\left(2n+1\right)\right]⋮d\)
=> \(2⋮d\) => d = 1 hoặc d =2
Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì \(2n+1⋮2\) (vô lý vì 2n +1 là số lẻ).
=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.
Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.
Thật vậy, nếu d ∈ ƯC 2n + 1,2n + 3 suy ra:
2n + 1⋮d
2n + 3⋮d
=> 2n + 3 − 2n + 1 ⋮d
=> 2⋮d => d = 1 hoặc d =2
Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì 2n + 1⋮2 (vô lý vì 2n +1 là số lẻ).
=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.
chúc bn hok tốt @_@
mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)
ta có: A = 5+5^2+5^3+...+5^100
vì 5 chia hết cho 5
5^2 chia hết cho 5
5^3 chia hết cho 5
.......
5^100 chia hết cho 5
nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)
a, gọi UCLN(2n+1,3n+1) là d
Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+1 chia hết cho d=> 6n+2 chia hết cho d
=> (6n+3)-(6n+2)=1 chia hết cho d
=> d là ước của 1
Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau
hum ....to chiu