K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

1 tháng 8 2019

\(A=\frac{5x+9}{x+1}=\frac{5x+5+4}{x+1}\)\(ĐKXĐ:x\ne-1\)

\(=\frac{5x+5}{x+1}+\frac{4}{x+1}\)

\(=\frac{5\left(x+1\right)}{x+1}+\frac{4}{x+1}\)

\(=5+\frac{4}{x+1}\)

\(\Rightarrow A=5+\frac{4}{x+1}\)

Để \(A\in Z\Rightarrow5+\frac{4}{x+1}\in Z\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x=\left\{0;1;3;-2;-3;-5\right\}\)

24 tháng 10 2016

x-3=k^2

x=k^2+3

x+1-k=t^2

k^2+4-k=t^2

(2k-1)^2+15=4t^2

(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5

---giải phương trình nghiệm nguyên với k,t---

TH1. [2(k-t)-1][2(k+t)-1]=-1.15

2(k-t)-1=-1=> k=t

4t-1=15=>t=4    nghiệm (-4) loại luôn

với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận

TH2. mà có bắt tìm hết đâu

x=19 ok rồi

24 tháng 10 2016

ô hay vừa giải xong mà

x=k^2+3

với k là nghiệm nguyên của phương trình

k^2-k+4=t^2

bắt tìm hết hạy chỉ một

x=19 là một nghiệm 

24 tháng 6 2020

Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)

hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)

Ta có bảng:

x+31-12-2
x-2-4-1-5
x-11-13-3
x204

-2

Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)

9 tháng 3 2017

Ta có : A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=    \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)  =      1+\(\frac{4}{\sqrt{x}-3}\)                                                                                                                        Để A có giá trị nguyên thi \(\sqrt{x}-3\)là ước của 4                                                                                                                                           \(\sqrt{x}-3\)= +-1;+-2;+-4                                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=1 suy ra x=16                                                                                                                                                                      Nếu\(\sqrt{x}-3\)=-1 suy ra x=4                                                                                                                                                                        Nếu\(\sqrt{x}-3\)= 2 suy ra  x=25                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=-2 suy ra x=1                                                                                                                                                                        Nếu \(\sqrt{x}-3\)=4 suy ra x=49                                                                                                                                                                      Neu  \(\sqrt{x}-3\)=-4 suy ra \(\sqrt{x}\)=-1 (loại)                                                                                                                    Vậy x=.......                                                                                                                                                                                                               Bạn thử cách này xem sao nhé mình cũng chưa thử cách này bao giờ

3 tháng 4 2020

\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)

a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)

\(\Rightarrow C>0\forall x\)(đpcm)

b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)

\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)

\(\Leftrightarrow x\in\left\{0\right\}\)

....

c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)

Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)

\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

:33

14 tháng 7 2017

\(\frac{x+6}{x+1}=\frac{x+1+5}{x+1}=1+\frac{5}{x+1}.\)

Để thỏa mãn đề bài thì x+1 phải là ước của 5 => (x + 1) = {-5; -1; 1; 5} => x = {-6; -2; 0; 4}