Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
Ta có: M = 6n/2n-1
= (2n-1) + (4n-2) + 3 /2n-1
= (2n-1) + 2(2n-1) +3 /2n-1
= 1+2+ 3/2n-1
=3 + 3/2n-1
Để M có giá trị nguyên thì 3/2n-1 có giá trị nguyên
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3)
=> 2n-1 thuộc { -3;-2;-1;1;2;3} ( vì 2n-1 là mẫu nên 2n-1 khác 0)
=> 2n thuộc {-2;-1;0;2;3;4}
=> n thuộc { -1; -1/2 ;0;1; 3/2 ; 2}
Mà n thuộc Z nên n thuộc {-1;0;1;2}
Vậy .......
\(M=\frac{6n}{2n-1}\)
\(=3+\frac{3}{2n-1}\)
Để \(M\in Z\) \(\Leftrightarrow\) \(\hept{\begin{cases}2n-1\in Z\\2n-1\inƯ\left(3\right)=1;-1;3;-3\end{cases}}\)
\(\Rightarrow\) \(2n\in\left(2;0;4;-2\right)\)
\(\Rightarrow\) \(n\in\left(1;0;2;-1\right)\)
Mà \(n\in Z\) \(\Rightarrow\) \(n\in\left(-1;0;1;2\right)\) là giá trị cần tìm
nh co de cuong cua mik cung co chung minh nh can phai tinh cac so ng n de bieu thuc co gia tri la so ng
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
a, 3n−1∈Ư(12)={±1;±2;±3;±4;±6;±12}
b,
Để phân số :2n+372n+37 có giá trị là số nguyên thì 2n+3:7
\(\implies\) 2n+3=7k2n+3=7k
\(\implies\) 2n=7k-3
\(\implies\) n=7k−327k−32
Vậy với mọi số nguyên n có dang 7k−327k−32 thì phân số 2n+372n+37 có giá trị là số nguyên
:))
Tham khảo link : https://hoc24.vn/cau-hoi/bai-6-tim-n-thuoc-z-de-phan-so-a-dfrac20n-134n-3a-a-co-gia-tri-nho-nhat-b-a-co-gia-tri-nguyen.160524630905
\(\dfrac{2n+3}{7}\) ϵ z ⇔ 2n + 3 ⋮ 7 (1)
mặt khác 2n + 3 là một số lẻ ∀ n ϵ N (2)
kết hợp (1) và (2) ta có : 2n + 3 = 7(2k+1) (k ϵ N)
⇔ 2n + 3 = 14k + 7
⇔ 2n = 14k + 4
⇔ n = (14k + 4): 2
n = 7k + 2 (k ϵ N)
vậy số nguyên n thỏa mãn đề bài là các số có dạng
n = 7k + 2 (k ϵ N)