Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến
Ta có \(f\left(1\right)+f\left(10\right)+f\left(100\right)=1+a+b+100+10a+b+10000+100a+b\)
\(=10101+111a+3b\)
Tương tự \(G\left(1\right)+G\left(10\right)+G\left(100\right)=10101+111m+3n\)
Từ đây ta có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)
Xét \(h\left(x\right)=f\left(x\right)-G\left(x\right)\) , khi đó \(h\left(x_0\right)=f\left(x_0\right)-G\left(x_0\right)\)
\(=ax_0+b-mx_0-n=\left(a-m\right)x_0+\left(b-n\right)\)
Để \(h\left(x_0\right)=0\Rightarrow\left(a-m\right)x_0+\left(b-n\right)=0\Rightarrow3\left(a-m\right)x_0+3\left(b-n\right)=0\)
Ta đã có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)
Vậy nên \(3x_0=111\Rightarrow x_0=37\)
Tóm lại \(f\left(37\right)=G\left(37\right)\)
Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.
đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1
Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.
suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020
mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)
xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1
hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1. Suy ra vô lý.
Vậy P(x) không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.