Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)
\(f(0)=0^2=0\)
\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)
b)
\(2f(a)=g(a)\)
\(\Leftrightarrow 2a^2=3-a\)
\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)
\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)
Ta có \(f\left(1\right)+f\left(10\right)+f\left(100\right)=1+a+b+100+10a+b+10000+100a+b\)
\(=10101+111a+3b\)
Tương tự \(G\left(1\right)+G\left(10\right)+G\left(100\right)=10101+111m+3n\)
Từ đây ta có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)
Xét \(h\left(x\right)=f\left(x\right)-G\left(x\right)\) , khi đó \(h\left(x_0\right)=f\left(x_0\right)-G\left(x_0\right)\)
\(=ax_0+b-mx_0-n=\left(a-m\right)x_0+\left(b-n\right)\)
Để \(h\left(x_0\right)=0\Rightarrow\left(a-m\right)x_0+\left(b-n\right)=0\Rightarrow3\left(a-m\right)x_0+3\left(b-n\right)=0\)
Ta đã có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)
Vậy nên \(3x_0=111\Rightarrow x_0=37\)
Tóm lại \(f\left(37\right)=G\left(37\right)\)
Câu 7: Từ gt suy ra \(f\) vừa đồng biến vừa nghịch biến nên \(f\) là hằng số, nghĩa là \(f\left(x\right)=1000\) với mọi \(x\). Vậy \(f\left(2015\right)=1000\).
Cũng có thể giải bằng cách thế trực tiếp: \(a+b\le2a+b,5a+b\ge6a+b\) nên \(a=0\).
Câu 9: \(f\left(x_0\right)=\left(\sqrt{3}+\sqrt{5}\right)\) hoặc \(f\left(x_0\right)=-\sqrt{3}-\sqrt{5}\).
Tới đây ngồi giải pt.