\(f\left(x\right)\)và\(g\left(x\right)\)tm 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)

12 tháng 9 2017

Ta có \(f\left(1\right)+f\left(10\right)+f\left(100\right)=1+a+b+100+10a+b+10000+100a+b\)

\(=10101+111a+3b\)

Tương tự \(G\left(1\right)+G\left(10\right)+G\left(100\right)=10101+111m+3n\)

Từ đây ta có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Xét \(h\left(x\right)=f\left(x\right)-G\left(x\right)\) , khi đó \(h\left(x_0\right)=f\left(x_0\right)-G\left(x_0\right)\)

\(=ax_0+b-mx_0-n=\left(a-m\right)x_0+\left(b-n\right)\)

Để \(h\left(x_0\right)=0\Rightarrow\left(a-m\right)x_0+\left(b-n\right)=0\Rightarrow3\left(a-m\right)x_0+3\left(b-n\right)=0\)

Ta đã có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Vậy nên \(3x_0=111\Rightarrow x_0=37\)

Tóm lại \(f\left(37\right)=G\left(37\right)\)

16 tháng 9 2017

@alibaba nguyễn : Giúp với ông ei :) Chắc ông cũng học đến cái này r :))

15 tháng 1 2018

bổ xung định lý thứ 5

f(x)>=0 hoặc g(x)>=0 và f(x)=g(x)

31 tháng 1 2017

Câu 7: Từ gt suy ra \(f\) vừa đồng biến vừa nghịch biến nên \(f\) là hằng số, nghĩa là \(f\left(x\right)=1000\) với mọi \(x\). Vậy \(f\left(2015\right)=1000\).

Cũng có thể giải bằng cách thế trực tiếp: \(a+b\le2a+b,5a+b\ge6a+b\) nên \(a=0\).

Câu 9: \(f\left(x_0\right)=\left(\sqrt{3}+\sqrt{5}\right)\) hoặc \(f\left(x_0\right)=-\sqrt{3}-\sqrt{5}\).

Tới đây ngồi giải pt.