Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=\left(x-a\right)\left(x-10\right)+1=x^2-\left(a+10\right)x+10a+1\).
Theo đề bài, ta đặt \(f\left(x\right)=\left(x-m\right)\left(x-n\right)\) với \(m,n\inℤ\).
\(f\left(x\right)=x^2-\left(m+n\right)x+mn\)
Khi đó, ta thu được hệ pt:
\(\left\{{}\begin{matrix}m+n=a+10\\mn=10a+1\end{matrix}\right.\)
Ta thấy nếu \(\left(a+10\right)^2-4\left(10a+1\right)< 0\)
\(\Leftrightarrow\left(a-12\right)\left(a-8\right)< 0\)
\(\Leftrightarrow8< a< 12\)
thì sẽ không tồn tại \(m,n\) thỏa mãn. Vậy \(\left[{}\begin{matrix}a\le8\\a\ge12\end{matrix}\right.\)
Khi đó \(m,n\) là nghiệm nguyên của pt \(X^2-\left(a+10\right)X+10a+1=0\) (*)
Pt này có \(\Delta=\left(a+10\right)^2-4\left(10a+1\right)\) \(=\left(a-10\right)^2-4\) mà (*) lại có 2 nghiệm nguyên nên \(\left(a-10\right)^2-4\) phải là số chính phương.
Đặt \(\left(a-10\right)^2-4=k^2\) (với \(k\inℕ\))
\(\Leftrightarrow\left(a-10\right)^2-k^2=4\)
\(\Leftrightarrow\left(a-10-k\right)\left(a-10+k\right)=4\)
Vì \(a-10-k\le a-10+k\) nên ta xét các TH sau:
TH1: \(\left\{{}\begin{matrix}a-10+k=2\\a-10-k=2\end{matrix}\right.\), khi đó \(k=0\) và \(a=12\)
\(\Rightarrow f\left(x\right)=x^2-22x+121=\left(x-11\right)^2\) thỏa ycbt.
TH2: \(\left\{{}\begin{matrix}a-10-k=1\\a-10+k=4\end{matrix}\right.\Rightarrow2k=3\), vô lí.
TH3: \(\left\{{}\begin{matrix}a-10-k=-2\\a-10+k=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=0\\a=8\end{matrix}\right.\).
Thử lại, ta có \(f\left(x\right)=x^2-18x+81=\left(x-9\right)^2\) thỏa ycbt.
TH4; \(\left\{{}\begin{matrix}a-10-k=-4\\a-10+k=-1\end{matrix}\right.\Rightarrow2k=3\), vô lí.
Vậy \(a\in\left\{8;12\right\}\) thỏa ycbt.
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)
Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ
Do \(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\left(d\right)=7\) nên \(P\left(x\right)-7=0\) có 4 nghiệm nguyên phân biệt
\(\Rightarrow P\left(x\right)-7=\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)\) với Q(x) là đa thức có giá trị nguyên khi x nguyên
Xét phương trình: \(P\left(x\right)-14=0\)
\(\Leftrightarrow P\left(x\right)-7=7\)
\(\Leftrightarrow\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)=7\) (1)
Do a;b;c;d phân biệt \(\Rightarrow\) vế trái là tích của ít nhất 4 số nguyên phân biệt khi x nguyên
Mà 7 là số nguyên tố nên chỉ có thể phân tích thành tích của 2 số nguyên phân biệt
\(\Rightarrow\) Không tồn tại x nguyên thỏa mãn (1) hay \(P\left(x\right)-14=0\) ko có nghiệm nguyên
Bài 1:
\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow xy-y+2-2x=0\)
\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với \(x=1\). Thay vào (2) ta được:
\(2y+y^2+3y=6\)
\(\Leftrightarrow y^2+5y-6=0\)
\(\Leftrightarrow y^2+y-6y-6=0\)
\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)
Với \(y=2\). Thay vào (2) ta được:
\(2x.2+2^2+3.2=6\)
\(\Leftrightarrow4x+4+6=6\)
\(\Leftrightarrow x=-1\)
Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)
Bài 2:
\(f\left(x\right)=x^4+6x^3+11x^2+6x\)
\(=x\left(x^3+6x^2+11x+6\right)\)
\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)
\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.
Đặt \(Q\left(x\right)=P\left(x\right)-3x-2\)
\(\Rightarrow Q\left(1\right)=Q\left(2\right)=Q\left(4\right)=0\)
\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;4\right\}\)
Do \(P\left(x\right)\) bậc 4 và có hệ số cao nhất bằng 1 \(\Rightarrow Q\left(x\right)\) cũng là đa thức bậc 4 có hệ số cao nhất bằng 1
\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)\) với \(x_0\in R\)
\(\Rightarrow P\left(x\right)=Q\left(x\right)+3x+2=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)+3x+2\)
\(\Rightarrow P\left(5\right)=12\left(5-x_0\right)+17\) ; \(P\left(-1\right)=-30\left(-1-x_0\right)-1\)
\(\Rightarrow S=60\left(5-x_0\right)+85-60\left(-1-x_0\right)-2=443\)
Cám ơn thầy ạ, em xin phép gửi đến thầy đề thi chọn học sinh giỏi toán lớp 9 của thành phố Hà Nội vừa thi xong thầy ạ
Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)
\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)
\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=f\left(x\right).f\left(x+1\right)\)
Thay \(x=2021\)
\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)
Đặt \(f\left(2021\right)+2021=k\)
Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên
\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên
Hay tồn tại số nguyên k thỏa mãn yêu cầu
Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.
đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1
Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.
suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020
mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)
xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1
hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1. Suy ra vô lý.
Vậy P(x) không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.