K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

p=3

q=2

25 tháng 3 2016

p=2

p=3

7 tháng 4 2019

p2-2q2=1

=>p2=2q+1(1)

Vì p2=2q+1 =>p là số lẻ=> p=2k+1=>p2=4k2+4k+1(2)

Từ 1 và 2 => 4k2+4k+1=2q+1

=>2(2k2+2k)=2q

=>2k2+2k=q=> q là số chẵn Mà q là số nguyên tố => q=2

Thay q = 2 vào đề bài => p=3

24 tháng 6 2023

p2-2q2=1

=>p2=2q^2+1(1)

Vì p2=2q^2+1 =>p là số lẻ=> p=2k+1=>p2=4k2+4k+1(2)

Từ 1 và 2 => 4k2+4k+1=2q+1

=>2(2k2+2k)=2q

=>2k2+2k=q=> q là số chẵn. Mà q là số nguyên tố => q=2

Thay q = 2 vào đề bài => p=3

20 tháng 3 2022

tham khảo

undefined

20 tháng 3 2022

Vì x,y là các số nguyên tố => x,y > 1

Lại có \(p^2-2q^2=17\) => \(p^2>17\Leftrightarrow p\ge5\)

-Xét p = 5, thay vào ta có q = 2

Khi đó, p + q = 7

-Xét p > 5, vì p là số nguyên tố nên p có dạng 6k + 1 hoặc 6k + 5 (k ∈ Z+)

-Xét p = 6k + 1, ta có\(\left(6k+1\right)^2-2q^2=17\Leftrightarrow36k^2+12k+1-2q^2=17\Leftrightarrow36k^2+12k-2q^2=16\Leftrightarrow18k^2+12k-q^2=8\)Ta thấy VP ⋮ 2 => VT ⋮ 2 mà 18k^2 + 12k  ⋮ 2 => q^2  ⋮ 2 <=> q = 2 (vì q là số nguyên tố). Thay vào ta được p = 5

-Xét p = 6k + 5, ta có

\(\left(6k+5\right)^2-2q^2=17\Leftrightarrow36k^2+60k+25-2q^2=17\Leftrightarrow36k^2+60k+24-2q^2=16\Leftrightarrow18k^2+30k+12-q^2=8\)Chứng minh tương tự, ta có q = 2 => p = 5

Vậy p + q = 7

p=5; q=2

 

17 tháng 4 2017

p=2 va p=3

16 tháng 4 2017

p=2

=>3p^2+1, 24p^2+1 là số nguyên tố

p>2

mà p là snt

=>p là số lẻ

=>3p^2+1 là số chẵn >2

=>3p^2+1 là hợp số(vô lý)

Vậy p=2