K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

p=2

=>3p^2+1, 24p^2+1 là số nguyên tố

p>2

mà p là snt

=>p là số lẻ

=>3p^2+1 là số chẵn >2

=>3p^2+1 là hợp số(vô lý)

Vậy p=2

7 tháng 2 2016

 Vì p là số nguyên tố suy ra p \(\ge\)2 suy ra 3p^2 +1 lớn hơn bằng 13 mà 3p^2+1  là SNTsuy ra 3p^2 +1 lẻ  suy ra p chẵn

mà p là số nguyên tố suy ra p =2 

 Thử lại : 3.2^2 +1 = 13 ( là SNT)

              24.2^2+1 = 97 ( là SNT)   ( thỏa mãn điều kiện đề bài )

          Vậy p = 2

 

3 tháng 1 2017

vì p là số nguyên tố suy ra b > 2 suy ra 3p^2+1 lớn hơn bằng 13 mà 3p^2 +1 là SNT suy ra 3p^2 +1 lẻ suy ra p chẵn mà p là số nguyên tố suy ra p=2

thử lại : 3.3^2+1=13 SNT

24.2^2+1=97 STN

vậy p=2

tk nha bạn

thank you bạn

(^_^)

Bạn le anh tu làm đúng và chính xác

Bạn Nuyễn Mai Thi nên làm theo cách bạn ấy

Ai thấy mình nói đúng thì nha

Cảm ơn nhiều

22 tháng 3 2021

Trả lời:

Cho p=2

=>3p^2+1, 24p^2+1 là số nguyên tố

p>2

mà p là số nguyên tố

=>p là số lẻ

=>3p^2+1 là số chẵn >2

=>3p^2+1 là hợp số(vô lý)

Vậy p=2

2 tháng 2

Giả sử p lẻ 
=> 3p^2 chẵn
Mà 3p^2 > 2
=> 3p^2 không là Số Nguyên tố(Vô lí)
=> p chẵn
=>p=2
thử lại thỏa mãn. Vậy p=2

22 tháng 9 2023

giúp mik đi 

xin đấy

25 tháng 9 2023

app như cc

hỏi ko ai trả lời

6 tháng 7 2016
  • Với \(n=3\Rightarrow A=2^3+3^2=17\) là số nguyên tố (nhận)
  • Vói \(n\ge5\) \(\Rightarrow A=\left(2^n+1\right)+\left(n^2-1\right)=\left(2^n+1\right)+\left(n-1\right)\left(n+1\right)\)

Vì \(2\equiv-1\left(mod3\right)\)\(\Rightarrow2^n\equiv\left(-1\right)^n\left(mod3\right)\) Mà n là số nguyên tố nên n lẻ => \(2^n+1⋮3\) (1)

Mặt khác : Trong ba số nguyên liên tiếp : (n-1) , n , (n+1) ắt sẽ có một số chia hết cho 3 . Vì n là số nguyên tố , \(n\ge5\) nên một trong hai số (n-1) , (n+1) chia hết cho 3 . Do đó \(\left(n-1\right)\left(n+1\right)⋮3\) (2)

Từ (1) và (2) ta suy ra \(A⋮3\)=> A không phải là số nguyên tố

Vậy loại trường hợp này.

  • Với n = 2 => A = 8 là hợp số. (loại)

Vậy n = 3 thoả mãn đề bài.

6 tháng 7 2016

+ Với n = 2, ta có: A = 22 + 22 = 4 + 4 = 8, không là số nguyên tố, loại

+ Với n = 3, ta có: A =  23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn

+ Với n nguyên tố > 3 => n lẻ => n = 2k + 1 (k thuộc N*)

=> 2n = 22k+1 = 22k.2 = (2k)2.2

Do (2;3)=1 => (2k,3)=1 => 2k  không chia hết cho 3 => (2k)2  không chia hết cho 3

=> (2k)2 chia 3 dư 1; 2 chia 3 dư 2 => (2k)2.2 chia 3 dư 2

=> 2n chia 3 dư 2 (1)

Do n nguyên tố > 3 => n không chia hết cho 3 => n2  không chia hết cho 3

=> n2 chia 3 dư 1 (2)

Từ (1) và (2) => A = 2n + n2 chia hết cho 3

Mà 1 < 3 < 2n + n2 => A = 2n + n2  là hợp số, loại

Vậy n = 3 thỏa mãn đề bài

4 tháng 4 2016

Giả sử p là SNt>3

p là SNT>3 thì p2 chia 3 dư 1

p2=3k+1

p2+14=3k+1+14=3k+15=3(k+5) chia hết cho 3 nên ko là SNt, loại

Vậy p=2 hoặc p=3

p=2 ko thỏa mãn

Vậy p=3

Thử lại 32+14=9+14=13, thỏa mãn là SNT