Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố suy ra p \(\ge\)2 suy ra 3p^2 +1 lớn hơn bằng 13 mà 3p^2+1 là SNTsuy ra 3p^2 +1 lẻ suy ra p chẵn
mà p là số nguyên tố suy ra p =2
Thử lại : 3.2^2 +1 = 13 ( là SNT)
24.2^2+1 = 97 ( là SNT) ( thỏa mãn điều kiện đề bài )
Vậy p = 2
vì p là số nguyên tố suy ra b > 2 suy ra 3p^2+1 lớn hơn bằng 13 mà 3p^2 +1 là SNT suy ra 3p^2 +1 lẻ suy ra p chẵn mà p là số nguyên tố suy ra p=2
thử lại : 3.3^2+1=13 SNT
24.2^2+1=97 STN
vậy p=2
tk nha bạn
thank you bạn
(^_^)
Bạn le anh tu làm đúng và chính xác
Bạn Nuyễn Mai Thi nên làm theo cách bạn ấy
Ai thấy mình nói đúng thì nha
Cảm ơn nhiều
Trả lời:
Cho p=2
=>3p^2+1, 24p^2+1 là số nguyên tố
p>2
mà p là số nguyên tố
=>p là số lẻ
=>3p^2+1 là số chẵn >2
=>3p^2+1 là hợp số(vô lý)
Vậy p=2
Giả sử p lẻ
=> 3p^2 chẵn
Mà 3p^2 > 2
=> 3p^2 không là Số Nguyên tố(Vô lí)
=> p chẵn
=>p=2
thử lại thỏa mãn. Vậy p=2
- Với \(n=3\Rightarrow A=2^3+3^2=17\) là số nguyên tố (nhận)
- Vói \(n\ge5\) \(\Rightarrow A=\left(2^n+1\right)+\left(n^2-1\right)=\left(2^n+1\right)+\left(n-1\right)\left(n+1\right)\)
Vì \(2\equiv-1\left(mod3\right)\)\(\Rightarrow2^n\equiv\left(-1\right)^n\left(mod3\right)\) Mà n là số nguyên tố nên n lẻ => \(2^n+1⋮3\) (1)
Mặt khác : Trong ba số nguyên liên tiếp : (n-1) , n , (n+1) ắt sẽ có một số chia hết cho 3 . Vì n là số nguyên tố , \(n\ge5\) nên một trong hai số (n-1) , (n+1) chia hết cho 3 . Do đó \(\left(n-1\right)\left(n+1\right)⋮3\) (2)
Từ (1) và (2) ta suy ra \(A⋮3\)=> A không phải là số nguyên tố
Vậy loại trường hợp này.
- Với n = 2 => A = 8 là hợp số. (loại)
Vậy n = 3 thoả mãn đề bài.
+ Với n = 2, ta có: A = 22 + 22 = 4 + 4 = 8, không là số nguyên tố, loại
+ Với n = 3, ta có: A = 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn
+ Với n nguyên tố > 3 => n lẻ => n = 2k + 1 (k thuộc N*)
=> 2n = 22k+1 = 22k.2 = (2k)2.2
Do (2;3)=1 => (2k,3)=1 => 2k không chia hết cho 3 => (2k)2 không chia hết cho 3
=> (2k)2 chia 3 dư 1; 2 chia 3 dư 2 => (2k)2.2 chia 3 dư 2
=> 2n chia 3 dư 2 (1)
Do n nguyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1 (2)
Từ (1) và (2) => A = 2n + n2 chia hết cho 3
Mà 1 < 3 < 2n + n2 => A = 2n + n2 là hợp số, loại
Vậy n = 3 thỏa mãn đề bài
Giả sử p là SNt>3
p là SNT>3 thì p2 chia 3 dư 1
p2=3k+1
p2+14=3k+1+14=3k+15=3(k+5) chia hết cho 3 nên ko là SNt, loại
Vậy p=2 hoặc p=3
p=2 ko thỏa mãn
Vậy p=3
Thử lại 32+14=9+14=13, thỏa mãn là SNT
p=2
=>3p^2+1, 24p^2+1 là số nguyên tố
p>2
mà p là snt
=>p là số lẻ
=>3p^2+1 là số chẵn >2
=>3p^2+1 là hợp số(vô lý)
Vậy p=2