Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n+5)(n+6) chia hết cho 6n
Ta có:(n+5)(n+6)=n(n+6)+5(n+6)=n2+6n+5n+30=n2+11n+30
Đặt tính:
n2+11n+30 | 6n
-n2 \(\frac{1}{6}n+\frac{11}{6}\)
11n+30
-11n+11
.......
Cách làm là vậy,bn tự làm tiếp nhé
Vì Nếu n = 0 thì 60 = 1 còn 6.0=0
Nên 6n không chia hết cho 6n với mọi n thuộc N
6n ko chia hết cho 6n với mọi n thuộc N vì n = 0 thì 6n = 1 và 6n = 6
Tk mk nha
n=1 nhưng cách giải mình tạm thời chưa nghĩ ra.
Tẹo mình sẽ trả lời lại sau
xét với mọi n thuộc N thì A:2 vì vậy ta cần tìm n để n:3n
xét để A: 3 thì n không có dạng 3k+2 để A:3(k thuộc N)
A=n^2+11n+30
để A:n thì n thuộc ước 30 mà ước thuộc N của 30 là
1,2,3,5,6,10,15,30
trong đó 2,5 có dạng 3k+2 nên ta loại
vậy n là 1,3,6,10,15,30
câu 2:
Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=\(\frac{n\left(n-1\right)}{2}\)
Ta có :
\(2n+1=2n-12+12+1=2n-12+13=2.\left(6-n\right)+13\)
Để \(\left(2n+1\right)\)chia hết cho \(\left(6-n\right)\)thì \(2.\left(6-n\right)+13\)chia hết cho \(\left(6-n\right)\)mà \(2.\left(6-n\right)\)chia hết cho \(6-n\)nên \(13\)chia hết cho \(6-n\)\(\Rightarrow6-n\inƯ\left(13\right)\)
Mà \(Ư\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow6-n\in\left\{-13;-1;1;13\right\}\)
Vì \(n\in N\)nên ta có bảng sau :
6-n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
N/xét | chọn | chọn | chọn | loại |
Vậy với \(n\in\left\{5;7;19\right\}\) thì \(\left(2n+1\right)\)chia hết cho \(\left(6-n\right)\)
Ủng hộ mk nha !!! ^_^