K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

xét với mọi n thuộc N thì A:2 vì vậy ta cần tìm n để n:3n 
xét để A: 3 thì n không có dạng 3k+2 để A:3(k thuộc N) 
A=n^2+11n+30 
để A:n thì n thuộc ước 30 mà ước thuộc N của 30 là 
1,2,3,5,6,10,15,30 
trong đó 2,5 có dạng 3k+2 nên ta loại 
vậy n là 1,3,6,10,15,30

19 tháng 6 2016

câu 2: 

Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra

f(x)f(x1)=ax2+bx+ca(x1)2b(x1)c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b

Mà f(x)f(x1)=xf(x)−f(x−1)=x

2ax+a+b=x⇒2ax+a+b=x

Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=1/2a=1/2;b=−1/2

Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)

f(n)=1+2+3+...+nf(n)=1+2+3+...+n

Áp dụng điều ta vừa chứng minh được thì:
f(1)f(0)=1f(1)−f(0)=1

f(2)f(1)=2f(2)−f(1)=2

....

f(n)f(n1)=nf(n)−f(n−1)=n

Do đó

1+2+...+n=f(1)f(0)+f(2)f(1)+...+f(n)f(n1)=f(n)f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=\(\frac{n\left(n-1\right)}{2}\)

5 tháng 12 2015

đúng là ko có bài nào dễ trong ngày hôm nay

5 tháng 12 2015

Bạn ghi nhỏ lại nhé. Hơn nũa bạn nên tách riêng từng câu hỏi, làm vầy nhiều lắm

9 tháng 5 2019

\(a_1=1,a_2=1+\frac{1}{2},a_3=1+\frac{1}{2}+\frac{1}{3},...,a_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\)

\(\Rightarrow a_1< a_2< ...< a_n\left(\text{vì }n\inℕ,n>1\right)\)

\(\Rightarrow\frac{1}{\left(a_1\right)^2}+\frac{1}{\left(2.a_2\right)^2}+....+\frac{1}{\left(n.a_n\right)^2}< \frac{1}{\left(a_1\right)^2}+\frac{1}{\left(2.a_1\right)^2}+....+\frac{1}{\left(n.a_1\right)^2}\)

\(=\frac{1}{1}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+...+\frac{1}{\left(n-1\right)n}=2-\frac{1}{n}< 2\left(\text{vì }n\inℕ,n>1\right)\)

Vậy...

p/s: lần sau bạn viết đề rõ ra :(( 

9 tháng 5 2019

mik viết khá rõ mà

20 tháng 6 2016

Câu 1

4 p/s   cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau

d/s la x= - 329

Câu   2

NHân vs 7 thành 7S rồi rút gọn là đc

 

20 tháng 6 2016

Câu 1 :

a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)

Bài 1:Tìm x:a) (x4)3 = \(\frac{x^{18}}{x^7}\)(x\(\ne\)0)b) x : \(\frac{3}{8}\)+\(\frac{5}{8}\)= xBài 2:Cho A = \(\frac{1}{2^2}\)+ \(\frac{1}{2^4}\)+ \(\frac{1}{2^6}\)+ ... +\(\frac{1}{2^{100}}\)CM: A < \(\frac{1}{3}\)Bài 3:Tìm số x, y, z theo a, b, c biết:ax = by = cz và xyz = 8 : (abc), (a, b, c \(\ne\)0)Bài 3:Cho x và y là hai đại lượng TLN với nhau. Khi x nhận giá trị x1 = 2, x2 = 5 thì các giá trị tương ứng y1, y2 thỏa mãn:2y1 + 7y2 = 48....
Đọc tiếp

Bài 1:

Tìm x:

a) (x4)3 = \(\frac{x^{18}}{x^7}\)(x\(\ne\)0)

b) x : \(\frac{3}{8}\)+\(\frac{5}{8}\)= x

Bài 2:

Cho A = \(\frac{1}{2^2}\)\(\frac{1}{2^4}\)\(\frac{1}{2^6}\)+ ... +\(\frac{1}{2^{100}}\)

CM: A < \(\frac{1}{3}\)

Bài 3:

Tìm số x, y, z theo a, b, c biết:

ax = by = cz và xyz = 8 : (abc), (a, b, c \(\ne\)0)

Bài 3:

Cho x và y là hai đại lượng TLN với nhau. Khi x nhận giá trị x1 = 2, x2 = 5 thì các giá trị tương ứng y1, y2 thỏa mãn:

2y1 + 7y2 = 48. Hãy biểu diễn y qua x.

Bài 4:

Tìm x để biểu thức sau đạt giá trị lớn nhất. Hãy tìm giá trị lớn nhất đó:

A = \(\frac{2016}{|x-2015|+2}\)

Bài 5:

A = 1-\(\frac{3}{4}\)+\(\left(\frac{3}{4}\right)^2\)-\(\left(\frac{3}{4}\right)^3\)+\(\left(\frac{3}{4}\right)^4\)- ... -\(\left(\frac{3}{4}\right)^{2009}\)+\(\left(\frac{3}{4}\right)^{2010}\)

Chứng tỏ A không phải là số nguyên.

Bài 5:

Một trường có 3 lớp 7. Biết rằng \(\frac{2}{3}\)số học sinh lớp 7A bằng \(\frac{3}{4}\)số học sinh lớp 7B bằng\(\frac{4}{5}\)số học sinh lớp 7C. Lớp 7C có số học sinh ít hơn tổng số học sinh của hai lớp kia là 57 bạn. Tính số học sinh mỗi lớp.

 

Gần thi rồi, các bạn ơi HELP mình với! Ai biết bài nào thì HELP gấp!!!!!

4
20 tháng 12 2016

Dài ngoằng nhìn phát ngán

a)\(\left(x^4\right)^{^3}=\frac{x^{18}}{x^7}\Leftrightarrow x^{12}=x^{18-7}\Leftrightarrow x^{12}=x^{11}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

20 tháng 12 2016

X=0=>loại

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Bài 1:

$20092009^{10}=(2009.10000+2009)^{10}=(2009.10001)^{10}$

$> (2009.2009)^{10}=(2009^2)^{10}=2009^{20}$

Vậy $20092009^{10}> 2009^{20}$

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Bài 2: Để bài yêu cầu tính tỷ số nên mình nghĩ bạn đang viết đề thì phải?

Bài 3: Để bài cần bổ sung thêm điều kiện $x,y$ tự nhiên/ nguyên/..... chứ nếu $x,y$ là số thực thì có vô số giá trị bạn nhé.

Bài 4:

Vì $x_1,x_2,...,x_n$ nhận giá trị $-1$ hoặc $1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ cũng nhận giá trị $-1,1$

Xét $n$ số hạng $x_1x_2,x_2x_3,...,x_nx_1$. Vì $n$ số hạng này có tổng bằng $0$ nên trong đây số số có giá trị $1$ phải bằng số số có giá trị $-1$ ($=\frac{n}{2}$)

$\Rightarrow n\vdots 2$. Ta có:

$x_1x_2.x_2x_3.x_3.x_4....x_1x_n=(x_1x_2...x_n)^2=(-1)^{\frac{n}{2}}.1^{\frac{n}{2}}=(-1)^{\frac{n}{2}}$

Nếu $\frac{n}{2}$ lẻ thì $(x_1x_2..x_n)^2=-1< 0$ (vô lý). Do đó $\frac{n}{2}$ chẵn.

Hay $n\vdots 4$

5 tháng 7 2020

a) f(x) = 2x + 3

Ta có: f(x) = 0

⇔ 2x + 3 = 0

⇒ 2x = -3

⇒ x = \(-\frac{3}{2}\)

Vậy x = \(-\frac{3}{2}\) thì đa thức f(x) = 2x + 3 có nghiệm