K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

(n+5)(n+6) chia hết cho 6n

Ta có:(n+5)(n+6)=n(n+6)+5(n+6)=n2+6n+5n+30=n2+11n+30

Đặt tính:

 n2+11n+30    |   6n

-n2                           \(\frac{1}{6}n+\frac{11}{6}\)

      11n+30

     -11n+11

.......

Cách làm là vậy,bn tự làm tiếp nhé

                   

25 tháng 4 2017

GIẢI:

Để \(\left(n+5\right)\left(n+6\right)⋮6n\)  thì \(\frac{\left(n+5\right)\left(n+6\right)}{6n}\in N\)

Xét  \(\frac{\left(n+5\right)\left(n+6\right)}{6n}=\frac{n^2+11n+30}{6n}=\frac{1}{6}\left(n+11+\frac{30}{n}\right)\)

Để \(\frac{\left(n+5\right)\left(n+6\right)}{6n}\in N\)thì \(n\in\)Ư(30)

Sau đó thử vào \(\frac{1}{6}\left(n+11+\frac{30}{n}\right)\)Để loại các giá trị

Kết Quả:   \(n\in\left\{1;3;10;30\right\}\)

7 tháng 3 2018

00000000000000000000000000000000

12 tháng 7 2016

                                  Ta có : 

                             \(2n+1=2n-12+12+1=2n-12+13=2.\left(6-n\right)+13\)

                           Để \(\left(2n+1\right)\)chia hết cho \(\left(6-n\right)\)thì \(2.\left(6-n\right)+13\)chia hết cho \(\left(6-n\right)\)mà \(2.\left(6-n\right)\)chia hết cho \(6-n\)nên \(13\)chia hết cho \(6-n\)\(\Rightarrow6-n\inƯ\left(13\right)\)

                           Mà \(Ư\left(13\right)=\left\{-13;-1;1;13\right\}\)

                            \(\Rightarrow6-n\in\left\{-13;-1;1;13\right\}\)

                         Vì \(n\in N\)nên ta có bảng sau : 

                     

6-n-13-1113
n1975-7
N/xétchọnchọnchọnloại

                      Vậy với \(n\in\left\{5;7;19\right\}\) thì \(\left(2n+1\right)\)chia hết cho \(\left(6-n\right)\)

                         Ủng hộ mk nha !!! ^_^

1 tháng 4 2016

A=5^n^2+5^n-18n^2-6^n*2

  = (5^n^2-18^n^2)+(5^n-12^n)

= -13^n^2-7^n

Mà  -13^n^2-7^n chia hết cho 91 ( do chia hết cho 13 và 7)

=> A chia hết cho 91 ( đpcm)

k đúng cho mình  nhé

14 tháng 7 2017

Phải sửa đề là chia hết cho 8 nha,mk có thử lại rồi: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n\left(n+4\right)-1\left(n+4\right)-n\left(n+1\right)+4\left(n+1\right)\)

\(=n^2+4n-n+4-n^2+n+4n+4\)

\(=\left(n^2-n^2\right)+\left(4n+4n\right)+\left(n-n\right)+\left(4+4\right)\)

\(=0+8n+0+8\)

\(=8n+8\)

\(=8\left(n+8\right)⋮8\rightarrowđpcm\)

17 tháng 7 2017

thế này mới đúng nè đầu bài đúng đó không sai đâu

(n-1)(n+4)-(n-4)(n+1)

=n(n+4)+(-1)(n+4)-((n(n+1)+(-4)(n+1)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

=\(=n^2+4n-n-4-n^2-n+4n+4\)

=\(=\left(n^2-n^2\right)+\left(4n+4n-n-n\right)+\left(-4+4\right)\)=6n chia hết cho 6 với mọi n thuộc Z