K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

  Đặt \(2^4+2^7+2^n=a^2\) (a \(\in\) N)

\(\iff\) \(\left(2^4+2^7\right)+2^n=a^2\)

\(\iff\)\(2^4.\left(1+2^3\right)+2^n=a^2\)

\(\iff\)\(2^4.3^2+2^n=a^2\)

\(\iff\)\(\left(2^2.3\right)^2+2^n=a^2\)

\(\iff\) \(12^2+2^n=a^2\)

\(\iff\)\(2^n=a^2-12^2\)

\(\iff\)\(2^n=\left(a-12\right).\left(a+12\right)\)

 Đặt \(a-12=2^q\left(2\right)\)  \(;a+12=2^p\left(1\right)\) 

 Gỉa sử :p>q ,p,q \(\in\) N

Lấy (1)-(2) vế với vế ta được \(24=2^p-2^q\)

                                            \(2^3.3=2^q.\left(2^{p-q}-1\right)\)

 \(\implies\) \(\hept{\begin{cases}2^3=2^q\\3=2^{p-q}-1\end{cases}}\) \(\implies\) \(\hept{\begin{cases}q=3\\2^2=2^{p-q}\end{cases}}\) \(\implies\) \(\hept{\begin{cases}q=3\\p-q=2\end{cases}}\)     \(\implies\)\(\hept{\begin{cases}q=3\\p=5\end{cases}}\)

 \(\implies\)  \(n=p+q=3+5=8\)

Với n=8  thì \(2^4+2^7+2^n=2^4+2^7+2^8=16+128+256=400=20^2\) là số chính phương thỏa mãn ycbt

Vậy n=8 

19 tháng 2 2020

bài này lớp 6

6 tháng 10 2016

Với \(n=0\Rightarrow n^4+n^3+n^2=0=0^2\left(TM\right)\)

\(n^4+n^3+n^2\)

\(=n^2\left(n^2+n+1\right)\)

\(\Rightarrow\)Để \(n^4+n^3+n^2\) là số chính phương thì \(\left(n^2+n+1\right)\) là số chính phương.

Có \(n^2< n^2+n+1< n^2+2n+1=\left(n+1\right)^2\)

\(\Rightarrow n^2+n+1\) không là số chính phương

Vậy ...

7 tháng 10 2016

Cảm ơn

b1,

\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)

=>n4+n3+n2+n+1=(n+1)4<=>n=0

nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải

18 tháng 10 2018

hình như sai đề phải là 2^8 chứ

18 tháng 10 2018

đề là như thế đấy, bạn cứ gửi bài giải theo đề của bạn cho mk tham khảo cũng được

17 tháng 7 2021

a=230+22020+4n=415+41010+4n=415(1+4995+4n-15) mà 415 là số cp suy ra (1+4995+4n-15)là số cp

ta có: 1+4995+4n-15=22n-30+2.21989+1=(22n-30+1)2

đề 1+4995+4n-15=(2n-15)2+2.21989+1=(2n-15+1)2 là số cp thì n-15=1989 suy ra n=1974

nếu sai thì sorry bạn nha

28 tháng 7 2023

Với \(n=1\) thì \(A=2\) không là SCP.

Với \(n=2\) thì \(B=32\) không là SCP.

Với \(n>2\) thì ta có \(A=n^2-n+2< n^2\) và \(A=n^2-n+2>n^2-2n+1=\left(n-1\right)^2\).

Do đó \(\left(n-1\right)^2< A< n^2\) nên A không thể là số chính phương.

Vậy, không tồn tại số nguyên dương \(n\) nào thỏa ycbt.

28 tháng 7 2023

thanks

22 tháng 8 2017

sai đề

hahaha bọn mày ơi 

vào trang chủ của : Edward Newgate đê 

hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))