Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)
\(\Leftrightarrow-n^3+n⋮n^3+1\)
\(\Leftrightarrow n=1\)
Bài 1
Ta có :A=(x+y)(x+4y)(x+2y)(x+3y)+42
=(x2+5xy+4y2)(x2+5xy+6y2)+42
Đặt x2+5xy+5y2=t (t thuộc Z)
Khi đó A=(t-1)(t+1)+42
A=t2-12+42
A=(x2+5xy+5y2)2-12+42
Vì x, y thuộc Z suy ra x2 thuộc Z, 5xy thuộc Z, 5y2thuộc Z
Suy ra x2+5xy+5y2 thuộc Z
Suy ra (x2+5xy+5y2)2 là số chính phương
Ta lại có 12 và 42 cũng là số chính phương
Suy ra A là số chính phương (đpcm)
Câu 1 đây bạn nhé. Mình ko chắc là nó đúng 100% đâu.
Xét không thỏa mãn.
Xét
Với thì:
Mặt khác, xét :
với mọi
Như vậy , suy ra để $A$ là số chính phương thì
Suy ra
\(n^4+2n^3+2n^2+n+7=k^2\)
\(\Leftrightarrow\left(n^2+n\right)^2+\left(n^2+n\right)+7=k^2\)
\(\Leftrightarrow4\left(n^2+n\right)^2+4\left(n^2+n\right)+1+27=4k^2\)
\(\Leftrightarrow\left(2n^2+2n+1\right)^2-4k^2=-27\)
\(\Leftrightarrow\left(2n^2+2n+1-2k\right)\left(2n^2+2n+1+2k\right)=-27\)
Làm nôt