Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n=0\Rightarrow n^4+n^3+n^2=0=0^2\left(TM\right)\)
\(n^4+n^3+n^2\)
\(=n^2\left(n^2+n+1\right)\)
\(\Rightarrow\)Để \(n^4+n^3+n^2\) là số chính phương thì \(\left(n^2+n+1\right)\) là số chính phương.
Có \(n^2< n^2+n+1< n^2+2n+1=\left(n+1\right)^2\)
\(\Rightarrow n^2+n+1\) không là số chính phương
Vậy ...
b1,
\(n^4< n^4+n^3+n^2+n+1\le n^4+4n^3+6n^2+4n+1=\left(n+1\right)^4\)
=>n4+n3+n2+n+1=(n+1)4<=>n=0
nhầm sai rồi nếu n^4+n^3+n^2+n+1 là scp thì mới chặn đc nhưng ở đây lại ko phải
\(n^2+2002=k^2\Rightarrow k^2-n^2=2002\)
\(\Rightarrow\left(k-n\right)\left(k+n\right)=2002\)
Do \(\left(k-n\right)+\left(k+n\right)=2k\) chẵn nên \(\left(k-n\right)\) và \(\left(k+n\right)\) cùng chẵn
Bạn chỉ cần xét các cặp ước chẵn của 2002
Ta thấy n2 chia cho 4 dư 0 hoặc 1 nên n2 + 2002 chia cho 4 dư 2 hoặc 3.
Do đó n2 + 2002 không thể là số chính phương.
hahaha bọn mày ơi
vào trang chủ của : Edward Newgate đê
hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))
Đặt \(2^4+2^7+2^n=a^2\) (a \(\in\) N)
\(\iff\) \(\left(2^4+2^7\right)+2^n=a^2\)
\(\iff\)\(2^4.\left(1+2^3\right)+2^n=a^2\)
\(\iff\)\(2^4.3^2+2^n=a^2\)
\(\iff\)\(\left(2^2.3\right)^2+2^n=a^2\)
\(\iff\) \(12^2+2^n=a^2\)
\(\iff\)\(2^n=a^2-12^2\)
\(\iff\)\(2^n=\left(a-12\right).\left(a+12\right)\)
Đặt \(a-12=2^q\left(2\right)\) \(;a+12=2^p\left(1\right)\)
Gỉa sử :p>q ,p,q \(\in\) N
Lấy (1)-(2) vế với vế ta được \(24=2^p-2^q\)
\(2^3.3=2^q.\left(2^{p-q}-1\right)\)
\(\implies\) \(\hept{\begin{cases}2^3=2^q\\3=2^{p-q}-1\end{cases}}\) \(\implies\) \(\hept{\begin{cases}q=3\\2^2=2^{p-q}\end{cases}}\) \(\implies\) \(\hept{\begin{cases}q=3\\p-q=2\end{cases}}\) \(\implies\)\(\hept{\begin{cases}q=3\\p=5\end{cases}}\)
\(\implies\) \(n=p+q=3+5=8\)
Với n=8 thì \(2^4+2^7+2^n=2^4+2^7+2^8=16+128+256=400=20^2\) là số chính phương thỏa mãn ycbt
Vậy n=8
+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3
=> A chia cho 4 dư 3
Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương
+) Xét n lẻ : n = 2k + 1
A = 2n .(n2 + n + 1) + 7 = 2(2k +1).(4k2 + 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7
= 16k3 + 24k2 + 12k + 8k2 + 12k + 6 + 7
= 16k3 + 32k2 + 24k + 13
13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5
Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)
=> Không có số n lẻ nào để A là số chính phương
Vậy Không tồn tại số nguyên n để A là số chính phương
+) Xét n = 2k ( n chẵn) => 2n3; 2n2; 2n đều chia hết cho 4 ; 7 chia 4 dư 3
=> A chia cho 4 dư 3
Mà Số chính phương chia cho 4 chỉ dư 0 hoặc 1=> không có số n chẵn nào để A là số chính phương
+) Xét n lẻ : n = 2k + 1
A = 2n .(n2 + n + 1) + 7 = 2(2k +1).(4k2 + 4k + 1 + 2k + 1+ 1) + 7 = (4k + 2). (4k2 + 6k + 3) + 7
= 16k3 + 24k2 + 12k + 8k2 + 12k + 6 + 7
= 16k3 + 32k2 + 24k + 13
13 chia cho 8 dư 5 ; 16k3; 32k2; 24k chia hết cho 8 => A chia cho 8 dư 5
Mà số chính phương chia cho 8 dư 0 hoặc 1; 4 ( chứng minh dễ dàng bằng cách xét các trường hợp; 8m; 8m + 1; ..; 8m+ 7)
=> Không có số n lẻ nào để A là số chính phương
Vậy Không tồn tại số nguyên n để A là số chính phương
Với \(n=0\) thì \(n^4+n^3+n^2=0\left(TM\right)\)
\(n^4+n^3+n^2\)
\(=n^2\left(n^2+n+1\right)\)
Để \(n^4+n^3+n^2\) là số chính phương thì \(\left(n^2+n+1\right)\) là số chính phương .
Có : \(n^2< n^2+n+1< n^2+2n+1=\left(n+1\right)^2\)
\(\Rightarrow n^2+n+1\) không là số chính phương .