K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

3n2 ⋮ n - 1

<=> 3.n2 - 3 + 3 ⋮ n - 1

<=> 3(n2 - 1) + 3 ⋮ n - 1

<=> 3.(n - 1)(n + 1) + 3 ⋮ n - 1

=> 3 ⋮ n - 1 => n - 1 thược Ư(3) = { - 3; - 1; 1; 3 }

Ta có bảng sau :

n - 1- 3 - 1 1   3   
n- 2024

Vậy n = { - 2; 0; 2; 4 }

8 tháng 2 2017

3n^2 = 3n. ( n - 1) +3n = 3n . (n-1) + 3( n-1) + 3 = (n-1)(3n+3) + 3 chia hết cho n-1 <=> 3 Chia hết cho n-1

<=> Tìm ước của 3 rồi tìm n

6 tháng 1 2018

a. \(2n+7⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)

\(\Leftrightarrow5⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)\)

Suy ra :

+) n + 1 = 1 => n = 0

+) n + 1 = 5 => n = 4

Vậy ........

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

5 tháng 8 2023

\(3n+2⋮n-1\)

\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Rightarrow3n+2-3n+3⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{0;2;-4;6\right\}\left(n\in Z\right)\)

28 tháng 12 2015

3n+2 chia hết cho n-1

=> 3n-3+5 chia hết cho n-1

=> 3.(n-1)+5 chia hết cho n-1

Mà 3(n-1) chia hết cho n-1

=> 5 chia hết cho n-1

=> n-1 \(\in\)Ư(5)={-5; -1; 1; 5}

=> n \(\in\){-4; 0; 2; 6}

n2+2n-7 chia hết cho n+2

=> n.(n+2)-7 chia hết cho n+2

=> 7 chia hết cho n+2

=> n+2 E Ư(7)={-7; -1; 1; 7}

=> n E {-9; -3; -1; 5}

15 tháng 2 2020

\(a,3n+2⋮n-1\Rightarrow\frac{3n+2}{n-1}\inℤ\Rightarrow\frac{3n-3+5}{n-1}\inℤ\) 

\(\Rightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow3+\frac{5}{n-1}\inℤ\)

\(3\inℤ\Rightarrow\frac{5}{n-1}\inℤ\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)

Ta có bảng sau: 

n - 11-15-5
n206-4

\(b,3n-8⋮n-4\Rightarrow\frac{3n-8}{n-4}\inℤ\Rightarrow\frac{3n-12+4}{n-4}\inℤ\)

\(\Rightarrow\frac{3n-12}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow\frac{3\left(n-4\right)}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow3+\frac{4}{n-4}\inℤ\)

\(3\inℤ\Rightarrow\frac{4}{n-4}\inℤ\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)

Ta có bảng sau:

n - 41-12-24-4
n536280

\(c,2n-5⋮n-1\Rightarrow\frac{2n-5}{n-1}\inℤ\Rightarrow\frac{2n-2-3}{n-1}\inℤ\)

\(\Rightarrow\frac{2n-2}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow\frac{2\left(n-1\right)}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow2-\frac{3}{n-1}\inℤ\)

\(2\inℤ\Rightarrow\frac{3}{n-1}\inℤ\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)

Ta có bảng sau:

n - 11-13-3
n204-2
15 tháng 2 2020

a)Ta có:3n+2=3.(n-1)+5

Mà 3.(n-1) chia hết cho (n-1) nên suy ra

Để 3.(n-1)+5 chia hết cho (n-1) thì 5 phải chia hết cho (n-1)

Suy ra:

n-1 thuộc ước của 5

Đến đây cậu tự làm tiếp nhé. Xin lỗi.

22 tháng 2 2019

(3n+2):(n-1) = 3 + 5/(n-1) 
a)Để 3n+2 chia hêt cho n-1 
thì n-1 phải là ước của 5 
do đó: 
n-1 = 1 => n = 2 
n-1 = -1 => n = 0 
n-1 = 5 => n = 6 
n-1 = -5 => n = -4 
Vậy n = {-4; 0; 2; 6} 
thì 3n+2 chia hêt cho n-1.

22 tháng 2 2019

c)3n+2 chia hết cho 2n-1

6n-3n+2 chia hết cho 2n-1

3(2n-1)+2 chia hết cho 2n-1

=>2 chia hết cho 2n-1 hay 2n-1 thuộc Ư(2)={1;-1;2;-2}

=>2n thuộc{2;0;3;-1}

=>n thuộc{1;0}