K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

2 tháng 2 2019

\(a)n+7⋮n+2\)

\(\Rightarrow n+2+5⋮n+2\)

Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)

Lập bảng :

n + 21-15-5
n-1-33-7

Vậy : ...

29 tháng 7 2019

#)Giải :

1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)

\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn

29 tháng 7 2019

a) Ta có: n + 7 = (n + 3) + 4

Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

n + 3 1 -1 2 -2 4 -4
  n -2 -4 -1 -5 1 -7

Vậy ...

b) Ta có: 2n + 5 = 2(n + 3) - 1

Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3

=> n + 3 \(\in\)Ư(1) = {1; -1}

Với: n + 3 = 1 => n = 1 - 3 = -2

n + 3 = -1 => n= -1 - 3 = -4

Vậy ...

AH
Akai Haruma
Giáo viên
2 tháng 1

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

AH
Akai Haruma
Giáo viên
2 tháng 1

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

6 tháng 1 2018

a. \(2n+7⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)

\(\Leftrightarrow5⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)\)

Suy ra :

+) n + 1 = 1 => n = 0

+) n + 1 = 5 => n = 4

Vậy ........

1 tháng 2 2016

ai mình rồi mình lại cho

1 tháng 2 2016

bó tay voi bài toán này

14 tháng 11 2015

a)2n-1 chia hết cho n-2

2n-4+3 chia hết cho n-2

2(n-2)+3 chia hết cho n-2

3 chia hết cho n-2 hay n-2 EƯ(3)={1;3;-1;-3}

=>nE{3;5;1;-1}

b)n2-n+2 chia hết cho n-1

n(n-1)+2 chia hết cho n-1

=>2 chia hết cho n-1 hay n-1EƯ(2)={1;2;-1;-2}

=>nE{2;3;0;-1}

C)tương tự

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

15 tháng 2 2020

\(a,3n+2⋮n-1\Rightarrow\frac{3n+2}{n-1}\inℤ\Rightarrow\frac{3n-3+5}{n-1}\inℤ\) 

\(\Rightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow3+\frac{5}{n-1}\inℤ\)

\(3\inℤ\Rightarrow\frac{5}{n-1}\inℤ\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)

Ta có bảng sau: 

n - 11-15-5
n206-4

\(b,3n-8⋮n-4\Rightarrow\frac{3n-8}{n-4}\inℤ\Rightarrow\frac{3n-12+4}{n-4}\inℤ\)

\(\Rightarrow\frac{3n-12}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow\frac{3\left(n-4\right)}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow3+\frac{4}{n-4}\inℤ\)

\(3\inℤ\Rightarrow\frac{4}{n-4}\inℤ\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)

Ta có bảng sau:

n - 41-12-24-4
n536280

\(c,2n-5⋮n-1\Rightarrow\frac{2n-5}{n-1}\inℤ\Rightarrow\frac{2n-2-3}{n-1}\inℤ\)

\(\Rightarrow\frac{2n-2}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow\frac{2\left(n-1\right)}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow2-\frac{3}{n-1}\inℤ\)

\(2\inℤ\Rightarrow\frac{3}{n-1}\inℤ\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)

Ta có bảng sau:

n - 11-13-3
n204-2
15 tháng 2 2020

a)Ta có:3n+2=3.(n-1)+5

Mà 3.(n-1) chia hết cho (n-1) nên suy ra

Để 3.(n-1)+5 chia hết cho (n-1) thì 5 phải chia hết cho (n-1)

Suy ra:

n-1 thuộc ước của 5

Đến đây cậu tự làm tiếp nhé. Xin lỗi.