K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4

A = \(\dfrac{n+1}{3n-1}\) (n \(\in\) Z)

Gọi ƯCLN(n + 1; 3n - 1) = d

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\3n-1⋮d\end{matrix}\right.\)

            \(\left\{{}\begin{matrix}3n+3⋮d\\3n-1⋮d\end{matrix}\right.\)

             3n + 3  - (3n - 1) ⋮ d

             3n + 3 - 3n + 1 ⋮ d

                     4 ⋮ d

               d \(\in\) Ư(4) = { 1; 2; 4}

                Để A tối giản thì

               d ≠ 4 và d ≠ 2 

Vậy để A tối giản thì n ≠ 2k - 1 

      

 

AH
Akai Haruma
Giáo viên
5 tháng 1

Lời giải:
Gọi $d=ƯCLN(3n-13, n-1)$

$\Rightarrow 3n-13\vdots d; n-1\vdots d$

$\Rightarrow 3(n-1)-(3n-13)\vdots d$

$\Rightarrow 10\vdots d\Rightarrow d=1,2,5,10$

Để phân số trên tối giản thì $d\neq 2,5,10$

Điều này xảy ra khi $n-1\not\vdots 2$ và $n-1\not\vdots 5$

$\Leftrightarrow n\neq 2k+1$ với mọi $k$ là số nguyên bất kỳ và $n\neq 5m+1$ với $m$ là số nguyên bất kỳ.

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

11 tháng 4 2023

M =  \(\dfrac{3n+19}{n-1}\)

\(\in\)N* ⇔ 3n + 19 ⋮ n - 1

           ⇔ 3n - 3 + 22 ⋮ n - 1

         ⇔ 3( n -1) + 22 ⋮ n - 1

         ⇔ 22 ⋮ n - 1

        ⇔  n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}

        ⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}

          Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}

b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1

Ta có:  \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\) 

        ⇒  \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)

     Trừ vế cho vế ta được: 

           3n + 19 - (3n - 3) ⋮ d

       ⇒ 3n + 19 - 3n + 3 ⋮ d

       ⇒ 22 ⋮ d 

Ư(22) = { - 22;  -11; -2; -1; 1; 2; 22}

⇒ d \(\in\) {1; 2; 11; 22}

nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22

nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11

Vậy để phân số M tối giản thì

\(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}

 

 

 

       

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

DD
30 tháng 8 2021

Đặt \(d=\left(3n-2,n+1\right)\).

Suy ra \(\hept{\begin{cases}3n-2⋮d\\n+1⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n-2\right)=5⋮d\Rightarrow d\in\left\{1,5\right\}\).

Ta cần tìm \(n\)để \(d=1\), tức là \(d\ne5\).

Với \(d=5\)\(n+1=5k\Leftrightarrow n=5k-1,k\inℤ\).

Vậy \(n\ne5k-1,k\inℤ\).

25 tháng 7 2016

gọi UCLN(2n+1,3n+1)=d

=>6n+2 chia hết cho d

6n+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1/3n+1 tối giản

25 tháng 7 2016

các bạn giải giúp mình câu b với 

6 tháng 8 2015

Không khó lắm nhưng dài => Không làm nữa