Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(3n-13, n-1)$
$\Rightarrow 3n-13\vdots d; n-1\vdots d$
$\Rightarrow 3(n-1)-(3n-13)\vdots d$
$\Rightarrow 10\vdots d\Rightarrow d=1,2,5,10$
Để phân số trên tối giản thì $d\neq 2,5,10$
Điều này xảy ra khi $n-1\not\vdots 2$ và $n-1\not\vdots 5$
$\Leftrightarrow n\neq 2k+1$ với mọi $k$ là số nguyên bất kỳ và $n\neq 5m+1$ với $m$ là số nguyên bất kỳ.
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
M = \(\dfrac{3n+19}{n-1}\)
M \(\in\)N* ⇔ 3n + 19 ⋮ n - 1
⇔ 3n - 3 + 22 ⋮ n - 1
⇔ 3( n -1) + 22 ⋮ n - 1
⇔ 22 ⋮ n - 1
⇔ n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}
⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}
Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}
b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1
Ta có: \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được:
3n + 19 - (3n - 3) ⋮ d
⇒ 3n + 19 - 3n + 3 ⋮ d
⇒ 22 ⋮ d
Ư(22) = { - 22; -11; -2; -1; 1; 2; 22}
⇒ d \(\in\) {1; 2; 11; 22}
nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22
nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11
Vậy để phân số M tối giản thì
n \(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Đặt \(d=\left(3n-2,n+1\right)\).
Suy ra \(\hept{\begin{cases}3n-2⋮d\\n+1⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n-2\right)=5⋮d\Rightarrow d\in\left\{1,5\right\}\).
Ta cần tìm \(n\)để \(d=1\), tức là \(d\ne5\).
Với \(d=5\): \(n+1=5k\Leftrightarrow n=5k-1,k\inℤ\).
Vậy \(n\ne5k-1,k\inℤ\).
gọi UCLN(2n+1,3n+1)=d
=>6n+2 chia hết cho d
6n+3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+1/3n+1 tối giản
A = \(\dfrac{n+1}{3n-1}\) (n \(\in\) Z)
Gọi ƯCLN(n + 1; 3n - 1) = d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\3n-1⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3n+3⋮d\\3n-1⋮d\end{matrix}\right.\)
3n + 3 - (3n - 1) ⋮ d
3n + 3 - 3n + 1 ⋮ d
4 ⋮ d
d \(\in\) Ư(4) = { 1; 2; 4}
Để A tối giản thì
d ≠ 4 và d ≠ 2
Vậy để A tối giản thì n ≠ 2k - 1