Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC đều có cạnh bằng 3cm. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CA lấy điểm D sao cho BE=CD=BC
a) Chứng minh AE=BD
b) Chứng minh tam giác AED vuông
c) Tính độ dài đoạn AE, DE
d) Tia phân giác của góc BCD cắt BD ở M. Chứng Minh CM// AB
e) Tính độ dài đoạn CM
p/s: Cần gấp
Gọi n2 + 2006 = m2 (m thuộc N*)
=> m2 - n2 = 2006
=> (m + n)(m - n) = 2006 = 1.2006 = 2.1003 = 17.118 = 59.34
Vì m + n > m - n nên ta có các trường hợp sau
TH1: m + n = 2006, m - n = 1
=> m + n + m - n = 2006 + 1
=> 2m = 2007 => m = 2007/2
=> n = 2007/2 - 1 = 2005/2
Mấy trường hợp kia tương tự
A=.................
de A la so chinh phuong thi (n-2)^2 =n^2-n+6
ta co (n-2)^2 =...=n^2 -4n=...=4n-4
- 4n-4 chia het n+6
- roi tim n
- cau ko hieu thi bao to nho
a) \(n^2+8n+29=n^2+4n+4n+16+15=\left(n+4\right)^2+15=m^2\)
\(\Leftrightarrow m^2-\left(n+4\right)^2=15\Leftrightarrow\left(m-n-4\right)\left(m+n+4\right)=13=1.13\)
Do \(m-n-4< m+n+4\)nên ta có trường hợp:
\(\hept{\begin{cases}m-n-4=1\\m+n+4=13\end{cases}}\Leftrightarrow\hept{\begin{cases}m=7\\n=2\end{cases}}\)(thỏa)
b) \(9n^2+6n+22=3\left(3n^2+n\right)+3n+1+21=\left(3n+1\right)^2+21=m^2\)
\(\Leftrightarrow m^2-\left(3n+1\right)^2=21\Leftrightarrow\left(m-3n-1\right)\left(m+3n+1\right)=21=1.21=3.7\)
Ta có các trường hợp:
- \(\hept{\begin{cases}m-3n-1=1\\m+3n+1=21\end{cases}}\Leftrightarrow\hept{\begin{cases}m=11\\n=3\end{cases}}\)(thỏa)
- \(\hept{\begin{cases}m-3n-1=3\\m+3n+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=5\\n=\frac{1}{3}\end{cases}}\)(loại)
Mình đã giải rồi, bạn xem nhé!