Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(n^2-n+2\) là số chính phương \(\left(n\inℤ^+\right)\)
Đặt \(n^2-n+2=k^2\ge0\left(k\inℕ\right)\)
\(\Leftrightarrow4n^2-4n+8=4k^2\)
\(\Leftrightarrow4n^2-4n+1+7=4k^2\)
\(\Leftrightarrow4k^2-\left(2n-1\right)^2=7\)
\(\Leftrightarrow\left(2k+2n-1\right)\left(2k-2n+1\right)=7\)
vì \(7=1.7>0;n\inℤ^+\)
\(\Leftrightarrow\left(2k+2n-1\right);\left(2k-2n+1\right)\in\left\{1;7\right\}\)
\(TH1:\left\{{}\begin{matrix}2k+2n-1=1\\2k-2n+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4n-2=-6\\2k-2n+1=7\end{matrix}\right.\) \(\Leftrightarrow n=-1\left(không.thỏa\right)\)
\(TH2:\left\{{}\begin{matrix}2k+2n-1=7\\2k-2n+1=1\end{matrix}\right.\) \(TH2:\left\{{}\begin{matrix}4n-2=6\\2k-2n+1=1\end{matrix}\right.\) \(\Leftrightarrow n=2\left(thỏa\right)\)
Vậy \(n=2\) thỏa đề bài