Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xuân Tuấn Trịnh29 tháng 4 2017 lúc 9:10
a) Để A là phân số thì 5 không chia hết cho n-1 hay n-1 không phải Ư(5) mà Ư(5)={-5;-1;1;5}
Ta có bảng sau:
n−1≠n−1≠ | -5 | -1 | 1 | 5 |
n≠n≠ | -4 | 0 | 2 | 6 |
Vậy n≠{−4;0;2;6}≠{−4;0;2;6}thì A là phân số
n=0 => A=50−1=−550−1=−5
n=10 => A=510−1=59510−1=59
n=-2 => A=5−2−1=−535−2−1=−53
Để A là số nguyên =>5 chia hết cho n-1 <=>n-1 là Ư(5)
Từ bảng trên => n={-4;0;2;6} thì A nguyên
b) Do n là Số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp
=>n và n+1 nguyên tố cùng nhau
=>phân số nn+1nn+1tối giản(dpcm)
c)11⋅2+12⋅3+...+149⋅50=1−12+12−13+...+149−150=1−150<1(đpcm)
~hok tốt~
xời dăm ba cái bài này tui...........................ko thik làm
+ Ta có: \(6n⋮6\forall n\)\(\Rightarrow\)\(6n+3:6\)dư \(3\)
\(6n-3:6\)dư \(6-3=3\)
+ Ta lại có: \(6.\left(n+3\right)⋮6\forall n\)\(\Rightarrow\)\(6.\left(n+3\right)+3:6\)dư \(3\)
Vậy \(6n+3,\)\(6n-3,\)\(6.\left(n+3\right)+3\)chia 6 dư 3
Số chia 8 dư 1 có dạng 8x + 1 (với x thuộc N)
Xét từng đáp án:
8n \(⋮\)8 (loại) (n thuộc N)
8n + 1 (chọn) (...)
8n - 1 = 8n + 8 - 7 = 8.(n + 1) - 7 chia 8 dư 7 (loại) (...)
8.(n + 1) \(⋮\)8 (loại) (...)
8.(n + 1) + 1 chia 8 dư 1 (chọn) (...)
Vì 8.(n + 1) \(⋮\)8 và 1 chia 8 dư 1
Vậy có 8n + 1 và 8.(n + 1) + 1 thỏa mãn đề bài
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Tách. Bước 2. Áp dụng tính chất chia hết của một tổng. Bước 3. Tìm n. |
Vì n ⋮ n , để n + 6 ⋮ n thì 6 ⋮ n (tức là 6 phải chia hết cho n) mà n ∈ ℕ nên n ∈ 1 ; 2 ; 3 ; 6 . |
a) 32 . 3n = 35
=> 3n = 35 : 32
=> 3n = 33
=> n = 3
b) (22 : 4) . 2n = 4
=> (4 : 4) . 2n = 4
=> 2n = 4
=> 2n = 22
=> n = 2
c) \(\frac{1}{9}.3^4.3^n=3^7\)
\(\Rightarrow3^{-2}.3^4.3^n=3^7\)
\(\Rightarrow3^{-2+4+n}=3^7\)
\(\Rightarrow3^{2+n}=3^7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=5\)
d) \(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=n\)
\(\Rightarrow3^{-2+3n}=n\)
\(\Rightarrow-2+3n=n\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=1\)
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
Sơ đồ con đường
Lời giải chi tiết
Bước 1. Tách.
Bước 2. Áp dụng tính chất chia hết của một tổng.
Bước 3. Tìm n+1.
Bước 4. Tìm n.
Ta có: 3 n + 4 = 3 n + 3 + 1 = 3 n + 1 + 1
Để 3 n + 4 ⋮ n + 1 thì 1 ⋮ n + 1
⇒ n + 1 = 1 ⇒ n = 0