Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chia 8 dư 1 có dạng 8x + 1 (với x thuộc N)
Xét từng đáp án:
8n \(⋮\)8 (loại) (n thuộc N)
8n + 1 (chọn) (...)
8n - 1 = 8n + 8 - 7 = 8.(n + 1) - 7 chia 8 dư 7 (loại) (...)
8.(n + 1) \(⋮\)8 (loại) (...)
8.(n + 1) + 1 chia 8 dư 1 (chọn) (...)
Vì 8.(n + 1) \(⋮\)8 và 1 chia 8 dư 1
Vậy có 8n + 1 và 8.(n + 1) + 1 thỏa mãn đề bài
1) \(1+2+3...............+n=4950\)
\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}=4950\)
\(\Leftrightarrow n\left(n+1\right)=4950.2\)
\(\Leftrightarrow n\left(n+1\right)=9900\)
\(\Leftrightarrow n\left(n+1\right)=99.100\)
\(\Leftrightarrow n=99\left(tm\right)\)
Vậy ................
1)
1 + 2 + 3 + ... + n = 4950
(n + 1) . n : 2 = 4950
(n + 1) . n = 9900
(n + 1) . n = 100 . 99
Vậy n = 99
Số liền trước bằng số liền sau trừ 1
nên số liền trước của 3n +1 là 3n + 1 - 1 = 3n
Dựa vào lý thuyết số liền trước kém số liền sau 1 đơn vị
nên số liền trước của số 3n+1 là 3n+1-1=3n+0=3n
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Tách. Bước 2. Áp dụng tính chất chia hết của một tổng. Bước 3. Tìm n. |
Vì n ⋮ n , để n + 6 ⋮ n thì 6 ⋮ n (tức là 6 phải chia hết cho n) mà n ∈ ℕ nên n ∈ 1 ; 2 ; 3 ; 6 . |
+ Với \(n=1\Rightarrow\left(7^n+1\right)\left(7^n+2\right)=8.9⋮3\)
+ Giả sử có \(A=\left(7^k+1\right)\left(7^k+2\right)=7^{2k}+3.7^k+2⋮3\) Ta cần c/m \(B=\left(7^{k+1}+1\right)\left(7^{k+1}+2\right)⋮3\)
Ta có
\(B=7^{2k+2}+3.7^{k+1}+2=7^2.7^{2k}+3.7.7^k+2\)
\(B=\left(7^{2k}+3.7^k+2\right)+48.7^{2k}+18.7^k=A+3\left(16.7^{2k}+6.7^k\right)\)
Ta có \(A⋮3;3\left(16.7^{2k}+6.7^k\right)⋮3\Rightarrow B⋮3\)
\(\Rightarrow\left(7^n+1\right)\left(7^n+2\right)⋮3\forall n\)
(Dùng phương pháp quy nạp)
xời dăm ba cái bài này tui...........................ko thik làm
+ Ta có: \(6n⋮6\forall n\)\(\Rightarrow\)\(6n+3:6\)dư \(3\)
\(6n-3:6\)dư \(6-3=3\)
+ Ta lại có: \(6.\left(n+3\right)⋮6\forall n\)\(\Rightarrow\)\(6.\left(n+3\right)+3:6\)dư \(3\)
Vậy \(6n+3,\)\(6n-3,\)\(6.\left(n+3\right)+3\)chia 6 dư 3