Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để thỏa mãn đề bài thì 7n+13 phải chia hết cho n+1 và 3n+1
Trước hết ta xét:\(7n+13⋮n+1\Rightarrow\left(7n+7\right)+6⋮n+1\Rightarrow7\left(n+1\right)+6⋮n+1\Rightarrow6⋮n+1\)
Mà \(n\inℕ^∗\Rightarrow n+1\inℕ^∗\)
\(\Rightarrow n+1\in\left\{2;3;6\right\}\Rightarrow n\in\left\{1;2;5\right\}\)
Lần lượt thay các giá trị của n vào 7n+13 và 3n+1 xem 7n+13 có chia hết cho 3n+1 không
Sau khi thử thì còn các giá trị n là 1;5 thỏa mãn
Vậy n=1 hoặc n=5
Để 7n +13 là mẫu số chung của \(\frac{n}{n+1}và\frac{3}{3n+1}\) thì 7n+13 phải chia hết cho n+1 và 3n+1
*Xét 7n+13\(⋮\)n+1(1)
+)Ta có:n+1\(⋮\)n+1
=>7.(n+1)\(⋮\)n+1
=>7n+7\(⋮\)n+1(2)
+)Từ (1) và (2)
=>(7n+13)-(7n+7)\(⋮\)n+1
=>7n+13-7n-7\(⋮\)n+1
=>6\(⋮\)n+1
=>n+1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3}
=>n\(\in\){-2\(\notin\)N*;0\(\notin\)N*;-3\(\notin\)N*;1\(\in\)N*;-4\(\notin\)N*;2\(\in\)N*}
=>n\(\in\){1;2}(*)
*Xét 7n+13\(⋮\)3n+1
=>3.(7n+13)\(⋮\)3n+1
=>21n+39\(⋮\)3n+1(3)
+)Ta có:3n+1\(⋮\)3n+1
=>7.(3n+1)\(⋮\)3n+1
=>21n+7\(⋮\)3n+1(4)
+)Từ (3) và (4)
=>(21n+39)-(21n+7)\(⋮\)3n+1
=>21n+39-21n-7\(⋮\)3n+1
=>32\(⋮\)3n+1
=>3n+1\(\in\)Ư(32)={\(\pm\)1;\(\pm\)2;\(\pm\)4;\(\pm\)8;\(\pm\)16;\(\pm\)32}
+)Ta có bảng:
3n+1 | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 | -16 | 16 | -32 | 32 |
n | \(\frac{-2}{3}\)\(\notin\)N* | 0\(\notin\)N* | -1\(\notin\)N* | \(\frac{1}{3}\)\(\notin\)N* | \(\frac{-5}{3}\)\(\notin\)N* | 1\(\in\)N* | -3\(\notin\)N* | \(\frac{7}{3}\)\(\notin\)N* | -5\(\notin\)N* | 5\(\in\)N* | \(\frac{-31}{3}\)\(\notin\)N* | \(\frac{31}{3}\)\(\notin\)N* |
=>n\(\in\){1;5}(**)
+)Từ (*) và (**)
=>n=1
Vậy n=1
Chúc bn học tốt
phần b tham khảo ở đây nhé :
Câu hỏi của Nguyễn Sĩ Hải Nguyên - Toán lớp 6 - Học toán với OnlineMath
( https://olm.vn/hoi-dap/detail/45713562308.html)
Câu b:
Giải:
Ta có: 4n-5 = 2(2n-1)-5 chia hết 2n-1
mà 2(2n-1) chia hết cho 2n-1
Suy ra 5 cũng sẽ chia hết cho 2n-1 => 2n-1 thuộc Ư(5)
=> Ta có bảng sau
2n-1 | 5 | 1 |
2n | 6 | 2 |
n | 3 | 1 |
Vậy n e { 3;1 }
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Tách. Bước 2. Áp dụng tính chất chia hết của một tổng. Bước 3. Tìm n+1. Bước 4. Tìm n. |
Ta có: 3 n + 4 = 3 n + 3 + 1 = 3 n + 1 + 1 Để 3 n + 4 ⋮ n + 1 thì 1 ⋮ n + 1 ⇒ n + 1 = 1 ⇒ n = 0 |
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Tách. Bước 2. Áp dụng tính chất chia hết của một tổng. Bước 3. Tìm n. |
Vì n ⋮ n , để n + 6 ⋮ n thì 6 ⋮ n (tức là 6 phải chia hết cho n) mà n ∈ ℕ nên n ∈ 1 ; 2 ; 3 ; 6 . |
không nhé, vì từ 5! trở đi sẽ chia hết cho 5 (vì 1x2x3x4x5x.... (chia hết cho 5))
Đặt phần từ 5! -> 2023! = b (b chia hết cho 5)
ta còn: 1!+2!+3!+4!+b
=1+1x2+1x2x3 + 1x2x3x4 + b
=1+2+6+24+b
=33+b
mà 33 không chia hết cho 5 trong khi b chia hết cho 5
=> S không chia hết cho 5