K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

ĐK: ( tự làm nha )

<=> a + b + c + 4 - \(2\sqrt{a-2}-4\sqrt{b-3}-6\sqrt{c-5}=0\)

<=> \(a-2-2\sqrt{a-2}+1+b-3+4\sqrt{b-3}+4+c-5-6\sqrt{c-5}+9=0\)

<=> \(\left(\sqrt{a-2}-1\right)^2+\left(\sqrt{b-3}-2\right)^2+\left(\sqrt{c-5}-3\right)^2=0\)

Đến đây chắc biết làm ùi 

6 tháng 8 2015

\(pt\Leftrightarrow\left(\sqrt{a-2}-1\right)^2+\left(\sqrt{b-3}-2\right)^2+\left(\sqrt{c-5}-3\right)^2=0\)

NV
2 tháng 3 2021

Đặt \(\left(2\sqrt{a}-5;2\sqrt{b}-5;2\sqrt{c}-5\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x;y;z>0\\a=\left(\dfrac{x+5}{2}\right)^2\\b=\left(\dfrac{y+5}{2}\right)^2\\c=\left(\dfrac{z+5}{2}\right)^2\end{matrix}\right.\)

\(Q=\dfrac{\left(x+5\right)^2}{4y}+\dfrac{\left(y+5\right)^2}{4z}+\dfrac{\left(z+5\right)^2}{4x}\ge\dfrac{\left(x+y+z+15\right)^2}{4\left(x+y+z\right)}\)

\(Q\ge\dfrac{\left(x+y+z\right)^2+30\left(x+y+z\right)+225}{4\left(x+y+z\right)}\)

\(Q\ge\dfrac{x+y+z}{4}+\dfrac{225}{4\left(x+y+z\right)}+\dfrac{15}{2}\ge2\sqrt{\dfrac{225\left(x+y+z\right)}{16\left(x+y+z\right)}}+\dfrac{15}{2}=15\)

Dấu "=" xảy ra khi \(a=b=c=25\)

2 tháng 3 2021

Áp dụng bđt hoán vị cho hai bộ số đơn điệu ngược chiều \(\left(a,b,c\right);\left(2\sqrt{a}-5,2\sqrt{b}-5,2\sqrt{c}-5\right)\)\(Q\ge\dfrac{a}{2\sqrt{a}-5}+\dfrac{b}{2\sqrt{b}-5}+\dfrac{c}{2\sqrt{c}-5}\).

Mặt khác ta có \(\dfrac{a}{2\sqrt{a}-5}-5=\dfrac{\left(\sqrt{a}-5\right)^2}{2\sqrt{a}-5}\ge0\).

Do đó \(Q\ge5+5+5=15\).

Dấu bằng xảy ra khi a = b = c = 25.

19 tháng 6 2019

a/ \(A=\sqrt{6-2\sqrt{5}}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1^2}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}\)\(=\sqrt{5}-1-\sqrt{5}\)\(=-1.\)

Bạn kiểm tra lại câu b với c đi, hình như sai đề rồi.

27 tháng 8 2019

Dạng này chú ý điểm rơi một tí nhé zZz Cool Kid zZz 

Có: \(bc\sqrt{a-2}=\frac{bc}{\sqrt{2}}.\sqrt{2\left(a-2\right)}\le\frac{abc}{2\sqrt{2}}\)

+) \(ca\sqrt[3]{b-6}=\frac{ca}{\sqrt[3]{9}}\sqrt[3]{3.3.\left(b-6\right)}\)\(\le\frac{abc}{3\sqrt[3]{9}}\)

+) \(ab\sqrt[4]{c-12}=\frac{ab}{\sqrt[4]{4^3}}.\sqrt[4]{4.4.4.\left(c-12\right)}\le\frac{abc}{4\sqrt[4]{4^3}}\)

Đến đây cộng theo vế 3 BĐT trên rồi đặt nhân tử chung ra ngoài (nhân tử chung là abc)

Rút gọn đi là xong:) Số quá xấu:(

Thay x=4 vào \(y=f\left(x\right)=\sqrt{x}\), ta được

\(f\left(4\right)=\sqrt{4}=2\)

=>A(4;2) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=2\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được;

\(f\left(2\right)=\sqrt{2}>1\)

=>B(2;1) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=8\) vào \(y=\sqrt{x}\), ta được:

\(y=\sqrt{8}=2\sqrt{2}\)

=>\(C\left(8;2\sqrt{2}\right)\) thuộc đồ thị hàm số \(y=\sqrt{x}\)

Thay \(x=4-2\sqrt{3}\) vào \(y=\sqrt{x}\), ta được:

\(y=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1< >1-\sqrt{3}\)

=>\(D\left(4-2\sqrt{3};1-\sqrt{3}\right)\) không thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

Thay \(x=6+2\sqrt{5}\) vào \(y=f\left(x\right)=\sqrt{x}\), ta được:

\(f\left(6+2\sqrt{5}\right)=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left|\sqrt{5}+1\right|=\sqrt{5}+1\)

vậy: \(E\left(6+2\sqrt{5};1+\sqrt{5}\right)\) thuộc đồ thị hàm số \(y=f\left(x\right)=\sqrt{x}\)

7 tháng 7 2021

b)\(27-10\sqrt{2}=5^2-2.5\sqrt{2}+2=\left(5-\sqrt{2}\right)^2\)

c)\(18-8\sqrt{2}=4^2-2.4\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)

d)\(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

e)\(6\sqrt{5}+14=9+2.3\sqrt{5}+5=\left(3+\sqrt{5}\right)^2\)

f)\(20\sqrt{5}+45=5^2+2.5.2\sqrt{5}+20=\left(5+2\sqrt{5}\right)^2\)

g)\(7-2\sqrt{6}=6-2\sqrt{6}+1=\left(\sqrt{6}-1\right)^2\)

7 tháng 7 2021

Thanks

22 tháng 7 2018

\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )

\(b.A>\dfrac{1}{3}\)\(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)

\(3-\sqrt{x}>0\)

\(x< 9\)

Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?

\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)

\(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)

22 tháng 7 2018

\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .

\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .

\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .