
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài làm:
đk: \(x\ge0\)
Ta có: Vì x không âm
=> \(-2x-2\sqrt{x}\le0\left(\forall x\right)\)
=> \(-2x-2\sqrt{x}+3\le3\left(\forall x\right)\)
=> \(P\le3\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=0\)
Vậy P max = 3 khi x = 0
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)



- Áp dụng công thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi a,b cùng dấu. Được : \(\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\ge\left|2015-x+x+2016\right|=4031\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2015-x\ge0\\2016+x\ge0\end{cases}\Leftrightarrow}-2016\le x\le2015\)
Vậy Min = 4031 <=> \(-2016\le x\le2015\)

\(P=\sqrt{x-5}+\sqrt{13-x}\)
\(P^2=\left(\sqrt{x-5}+\sqrt{13-x}\right)^2\)
= x-5 +13 - x + 2\(\sqrt{\left(x-5\right)\left(13-x\right)}\)
=8+2\(\sqrt{\left(x-5\right)\left(13-x\right)}\)
theo BDT cosi ta co
2\(\sqrt{\left(x-5\right)\left(13-x\right)}\) \(\le x-5+13-x\)=8
8+2\(\sqrt{\left(x-5\right)\left(13-x\right)}\le8+8=16\)
\(P^2\le16\Leftrightarrow P\le4\Rightarrow maxP=4\)
dau = xay ra <=> x-5=13 -x <=> x=9

1) Ta chứng minh tổng AB2 + CD2 không đổi. Thật vậy:
Gọi I, J lần lượt là trung điểm AB và CD.
Ta có \(OI\perp AB;OJ\perp AC\)
Khi đó: \(AB^2+CD^2=\left(2AI\right)^2+\left(2CJ\right)^2=4\left(AI^2+CJ^2\right)\)
\(=4\left(OA^2-OI^2+OC^2-OJ^2\right)=4\left[2R^2-\left(OI^2+OJ^2\right)\right]\)
\(=4\left[2R^2-\left(OI^2+IK^2\right)\right]=4\left(2R^2-OK^2\right)\)
Do K cố định nên OK không đổi. Vậy \(4\left(2R^2-OK^2\right)\) không đổi hay AB2 + CD2 không đổi.
Khi đó ta có :
\(S_{ACBD}=\frac{1}{2}.AB.CD\le\frac{1}{2}.\frac{1}{2}\left(AB^2+CD^2\right)\)
\(S_{ACBD}\le\frac{1}{4}.4\left(2R^2-OK^2\right)=2R^2-OK^2\)
Vậy \(maxS_{ACBD}=2R^2-OK^2\) khi AB = CD.

a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
ĐK: \(-1\le x\le2\)
Áp dụng BĐT: \(2ab\le a^2+b^2\)
\(B=4\sqrt{\left(x+1\right)\left(2-x\right)}-1\)
\(\le2\left(x+1+2-x\right)-1\)
\(\le5\)
\(B_{max}=5\Leftrightarrow x+1=2-x\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)