\(\frac{\sqrt{x-9}}{5x}\)

b) Tìm max B = \(\fra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

16 tháng 10 2019

Với  \(x\ge9\).

Ta có:  \(A=\frac{\sqrt{x-9}}{5x}\)

<=> \(5Ax=\sqrt{x-9}\)

<=> \(\hept{\begin{cases}A\ge0\\25A^2x^2=x-9\left(1\right)\end{cases}}\)

(1) <=> \(25A^2x^2-x+9=0\)

phương trình trên có nghiệm  <=> \(\Delta\ge0\)<=> \(1^2-900A^2\ge0\)<=> \(-\frac{1}{30}\le A\le\frac{1}{30}\)

=> \(Amax=\frac{1}{30}\) xảy ra <=> \(25.\frac{1}{900}x^2-x+9=0\Leftrightarrow x=18>9\)(thỏa mãn)

Vậy:...

16 tháng 10 2019

Nguyễn Linh Chi em có cách lớp 8 (nâng cao) này:)

ĐK: x>= 9

Xét a > 0.

Ta có: \(A=\frac{1}{\sqrt{a}}.\frac{\sqrt{a\left(x-9\right)}}{5x}\le\frac{1}{\sqrt{a}}.\frac{a+x-9}{10x}=\frac{\sqrt{a}}{10x}+\frac{1}{10\sqrt{a}}-\frac{9}{10x\sqrt{a}}\)

\(=\frac{1}{10x}\left(\sqrt{a}-\frac{9}{\sqrt{a}}\right)+\frac{1}{10\sqrt{a}}\)

Như vậy ta chọn a để biểu thức không phụ thuộc vào biến x. Tức là \(\sqrt{a}-\frac{9}{\sqrt{a}}=0\Leftrightarrow a=9\)

Bây giờ thay ngược a bởi 9 vào các cái bên trên là xong:D. Ta được: \(A\le\frac{1}{30}\)

Đẳng thức xảy ra khi a = x -9 <=> 9 =x-9<=>x=18

21 tháng 6 2017

viết x = (x - 9) + 9 

do x - 9 nằm trong căn bậc hai nên nó ko âm 

sử dụng cauchy cho hai số x - 9 và 9 ta có 

x = (x - 9) + 9 >=2căn(9*(x-9))=6*căn(x-9) 

suy ra A <=1/30 

dấu bằng có được khi x = 18 lúc đó max A = 1/30

Vậy...

Ukm

It's very hard

l can't do it 

Sorry!

 
11 tháng 10 2016

\(B=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+x\left(a+b\right)+ab}{x}=x+\frac{ab}{x}+\left(a+b\right)\)

Áp dụng bđt Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\)

\(\Rightarrow B\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

Dấu "=" xảy ra khi \(x=\frac{ab}{x}\Rightarrow................\)

Vậy ......................

Bài tìm MAX tồn tại hai giá trị , do k có điều kiện ràng buộc biến x

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)