K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

Đáp án :

(m^2−9)(m^2−37)<0 khi m∈{±4;±5;±6}

Giải thích các bước giải :

Để (m^2−9)(m^2−37)<0

⇒m^2−9 và m^2−37 trái dấu 

+)Th1:  m^2−9<0

           m^2−37>0

⇔  m^2<9

     m^2>37

⇔    m^2∈(0;1;4)

        m2∈(47;64;81;...)

⇔    m∈(0;±1;±2)

        m∈(±7;±8;±9;...)

⇒   Loại 

+)Th2:  m^2−9>0

            m^2−37<0

⇔    m^2>9

        m^2<37

⇔      m^2∈(16;25;36;...)

         m^2∈(0;1;4;9;16;25;36)

⇔     m^2∈{16;25;36}

⇔     m∈{±4;±5;±6}

⇒Thỏa mãn

Vậy : (m^2−9)(m^2−37) < 0 khi  m{ ± 4 ; ± 5 ; ±6 }                            

9 tháng 8 2015

các bạn giúp mình nhanh với :v

 

23 tháng 5 2016

2.P=\(\frac{3-a}{a+10}\)

a, để P>0 

TH1 3-a>0 và a+10 >0

=> a<3 và a> -10

=> -10<a<3

TH2 3-a<0 và a+10<0

=> a>3 và a<-10(vô lý)

Vậy để P>0 thì -10<a<3

b.để P<0

TH1 3-a<0 và a+10>0

        a>3 và a>-10 

         Vậy a>3

TH2 3-a>0 và a+10<0

   => a<3 và a<-10

Vậy a<-10

vậy để P<0 thì a >3 hoặc a<-10

23 tháng 5 2016

bài 3.

a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)

Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)

b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)

Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)

c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)

Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)

18 tháng 4 2021

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

18 tháng 4 2021

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)

a: \(f\left(1\right)=\dfrac{1-1}{1-2}=-1\)

\(f\left(-1\right)=\dfrac{-1-1}{-1-2}=-\dfrac{2}{-3}=\dfrac{2}{3}\)

\(f\left(0\right)=\dfrac{0-1}{0-2}=\dfrac{1}{2}\)

\(f\left(2\right)=\dfrac{2-1}{2-2}=\varnothing\)

b: f(x)=2 nên x-1=2x-4

=>2x-4=x-1

=>x=3

c: Để y là số ngyên thì \(x-2+1⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1\right\}\)

hay \(x\in\left\{3;1\right\}\)

27 tháng 11 2017

Giỏi quá ha!!!oe

27 tháng 11 2017

\(y=f\left(x\right)=\dfrac{x-1}{x-2}\)

a)

\(y=f\left(1\right)=\dfrac{1-1}{1-2}=\dfrac{0}{-1}=0\)

\(y=f\left(-1\right)=\dfrac{\left(-1\right)-1}{\left(-1\right)-2}=\dfrac{-1-1}{-1-2}=\dfrac{-\left(1+1\right)}{-\left(1+2\right)}=\dfrac{-2}{-3}=\dfrac{2}{3}\)

\(y=f\left(0\right)=\dfrac{0-1}{0-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

18 tháng 6 2017

1) \(9^{x-1}=\dfrac{1}{9}\) (1)

\(\Leftrightarrow3^{2x-2}=3^{-2}\)

\(\Leftrightarrow2x-2=-2\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{0\right\}\)

2) \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\) (2)

\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{1}{\sqrt{7-3x^2}}=\dfrac{2}{15}\)

\(\Leftrightarrow\dfrac{1}{3\sqrt{7-3x^2}}=\dfrac{2}{15}\)

\(\Leftrightarrow15=6\sqrt{7-3x^2}\)

\(\Leftrightarrow6\sqrt{7-3x^2}=15\)

\(\Leftrightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)

\(\Leftrightarrow7-3x^2=\dfrac{25}{4}\)

\(\Leftrightarrow-3x^2=\dfrac{25}{4}-7\)

\(\Leftrightarrow-3x^2=-\dfrac{3}{4}\)

\(\Leftrightarrow x^2=\dfrac{1}{4}\)

\(\Leftrightarrow x=\pm\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)

18 tháng 6 2017

2 phần trên bạn giải theo kiến thức lớp mấy vậy?

10 tháng 8 2018

câu 1 : bn tự lm đi nha

câu 2 : ta có : \(\left(x^2+5\right).\left(x^2-25\right)=0\Leftrightarrow\left(x^2+5\right)\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\left(tm\right)\) vậy \(m=\pm5\)

b) ta có : \(\left(x-5\right)\left(x^2-25\right)< 0\Leftrightarrow\left(x-5\right)^2\left(x+5\right)< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+5< 0\\x-5\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -5\\x\ne5\end{matrix}\right.\) \(\Rightarrow x< -5\)

\(\Rightarrow x=\left\{x\in Z\backslash x< -5\right\}\)

10 tháng 8 2018

1/

a)a=1 hoặc a=-1

b)a=0

c)\(\left|a\right|=10\) => a=10 hoặc a=-10

d)\(\left|a\right|=-85:\left(-17\right)=5\) =>a=-5 hoặc a=5

e)a=-5 hoặc a=5

2/

a)\(\left(x^2+5\right)\left(x^2-25\right)=0\)

1/\(x^2+5=0\)

\(\Leftrightarrow x^2=-5\)(không thõa mãn)

2/\(x^2-25=0\Leftrightarrow x^2=25\)

\(\Leftrightarrow x=5\) hoặc \(x=-5\)

vậy phương trình đã cho có tập nghiệm S={-5;5}

b)\(\left(x-5\right)\left(x^2-25\right)< 0\)

\(1)x-5< 0\Leftrightarrow x< 5\)

\(2)x^2-25< 0\Leftrightarrow x^2< 25\Leftrightarrow x< -5\)

vậy bất phương trình đã cho có {x\(|\)x<5}

\(\left(x^2-4\right)\left(x^2+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4=0\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=0\Rightarrow x=\pm2\\x^2+5=0\Rightarrow x\left(loại\right)\end{matrix}\right.\)