K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

18 tháng 4 2021

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)

29 tháng 6 2017

Từ \(\dfrac{x}{y}=\dfrac{9}{7}\)ta có : \(x=\dfrac{9y}{7}\)(1) ;

Từ \(\dfrac{y}{z}=\dfrac{7}{3}\)ta có: \(z=\dfrac{3y}{7}\)(2);

Thay (1) và (2) vào biểu thức trên ta có:

\(\left(\dfrac{9y}{7}\right)^2-\left(\dfrac{9y^2}{7}\right)+\left(\dfrac{3y}{7}\right)^2=27=>\dfrac{81y^2}{49}-\dfrac{63y^2}{49}+\dfrac{9y^2}{49}=27\)

\(=>\dfrac{27y^2}{49}=27=>27y^2=27.49=1323\)

\(=>y^2=1323:27=49=>y=7;-7\)

Lần lượt thay y =7; -7 vào hệ thức ta tìm được:

\(y=7;x=9;z=3\)\(y=-7;x=-9;z=-3\)

CHÚC BẠN HỌC TỐT...

29 tháng 11 2017

\(\left\{{}\begin{matrix}3\left(x-1\right)=2\left(y-2\right)\\5\left(y-2\right)=4\left(z-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\left(x-1\right)}{6}=\dfrac{2\left(y-2\right)}{6}\\\dfrac{5\left(y-2\right)}{20}=\dfrac{4\left(z-3\right)}{20}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{y-2}{3}\\\dfrac{y-2}{4}=\dfrac{z-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{8}=\dfrac{y-2}{12}\\\dfrac{y-2}{12}=\dfrac{z-3}{15}\end{matrix}\right.\Leftrightarrow\dfrac{x-1}{8}=\dfrac{y-2}{12}=\dfrac{z-3}{15}\Leftrightarrow\dfrac{2x-2}{16}=\dfrac{3y-6}{36}=\dfrac{z-3}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x-2}{16}=\dfrac{3y-6}{36}=\dfrac{z-3}{15}=\dfrac{2x-2+3y-6-z+3}{16+36-15}=\dfrac{\left(2x+3y-z\right)+\left(3-2-6\right)}{37}=\dfrac{79-5}{37}=\dfrac{74}{37}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.8+1=17\\y=2.12+2=26\\z=2.15+3=33\end{matrix}\right.\)

29 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3a+b+c}{a}=\dfrac{a+3b+c}{b}=\dfrac{a+b+3c}{c}=\dfrac{3a+b+c+a+3b+c+a+b+3c}{a+b+c}=\dfrac{5a+5b+5c}{a+b+c}=\dfrac{5\left(a+b+c\right)}{a+b+c}=5\)\(\Rightarrow\left\{{}\begin{matrix}3a+b+c=5a\\a+3b+c=5b\\a+b+3c=5c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a+c=2b\\a+b=2c\end{matrix}\right.\)

\(M=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\dfrac{2c}{c}+\dfrac{2a}{a}+\dfrac{2b}{b}=2+2+2=6\)

6 tháng 4 2017

bài 1 dễ mà bn .bn chỉ cần tính x rùi thay vào thui mà

6 tháng 4 2017

Thì bài 1 mình bt r. Mình chỉ hỏi bài 2,3 thôi

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

28 tháng 11 2019

banh

Bài 1: 

a: \(M=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)

\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot\left(2\cdot3-1\right)}\)

\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot5}=\dfrac{2}{3}\cdot\dfrac{6}{5}=\dfrac{12}{15}=\dfrac{4}{5}\)

b: \(N=\left(\dfrac{-3}{4}+\dfrac{5}{13}\right)\cdot\dfrac{7}{2}-\left(\dfrac{9}{4}+\dfrac{8}{13}\right)\cdot\dfrac{7}{2}\)

\(=\dfrac{7}{2}\left(-\dfrac{3}{4}+\dfrac{5}{13}-\dfrac{9}{4}-\dfrac{8}{13}\right)\)

\(=\dfrac{7}{2}\cdot\left(-3-\dfrac{3}{13}\right)=\dfrac{7}{2}\cdot\dfrac{-42}{13}=\dfrac{-147}{13}\)