\(y=\left(m+3\right)x-4\) (d)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Lời giải:

Ta viết lại hàm số :

\(y=(m-2)x-3m+4+m^2x\)

\(=x(m^2+m-2)-3m+4\)

Để hàm số trên là hàm số bậc nhất thì:

\(m^2+m-2\neq 0\Leftrightarrow (m-1)(m+2)\neq 0\)

\(\Leftrightarrow \left\{\begin{matrix} m\neq 1\\ m\neq -2\end{matrix}\right.\)

------------------------------

Bạn cứ nhớ hàm số $y=ax+b$ là hàm bậc nhất khi $a\neq 0$

1 tháng 8 2019

Ôn tập Hàm số bậc nhất

1 tháng 8 2019

1) Bạn tự vẽ :v

2) Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(-\frac{1}{3}x+1\Leftrightarrow x+5\Leftrightarrow\frac{4}{3}x=-4\Leftrightarrow x=-3\Rightarrow y=x=5=-3+5=2\)

Vậy giao điểm của (d1) và (d2) có tọa độ là (-3;2)

3) Giả sử điểm A (2; -3m+1) thuộc (d1), ta có:

\(-3m+1=\frac{-1}{3}\cdot2+1\\ \Leftrightarrow-3m+1=-\frac{2}{3}+1\\ \Leftrightarrow-3m=-\frac{2}{3}\\ \Leftrightarrow m=\frac{2}{9}\)

Vậy với m = 2/9 thì điểm A thuộc (d1)

31 tháng 1 2020

Bài làm :

\(D=\left|\frac{m-3;4}{-m;5}\right|=5\left(m-3\right)+4m\)

\(D_x=\left|\frac{3m;4}{4m-1;5}\right|=15m-4\left(4m-1\right)\)

\(D_y=\left|\frac{m-3;3m}{-m;4m-1}\right|=\left(m-3\right)\left(4m-1\right)+3m^2\)

a) Hệ có 1 nghiệm duy nhất (x;y)\(\Leftrightarrow D\ne0\)

<=> \(5m-15+4m\ne0\Leftrightarrow m\ne\frac{15}{9}\)

Nghiệm (x;y) là : \(\left\{{}\begin{matrix}x=\frac{15m-16m+4}{5m-15+4m}=\frac{-m+4}{9m-15}\\y=\frac{4m^2-m-12m+3+3m^2}{5m-15+4m}=\frac{7m^2-13m+3}{9m+15}\end{matrix}\right.\)

b) Hệ vô nghiệm <=> D=0 <=> \(m=\frac{15}{9}\)

Ta có : \(\left\{{}\begin{matrix}D=0\\D_x=\frac{7}{3}\\D_y=\frac{7}{9}\end{matrix}\right.\)

Vậy m=15/9 thì hệ vô nghiệm.

NV
7 tháng 11 2019

a/ Để hàm số là hàm bậc nhất

\(\Rightarrow1-2m>0\Rightarrow m< \frac{1}{2}\)

Do \(\sqrt{1-2m}>0\Rightarrow\) hàm số luôn đồng biến

b/ \(3+2m^2>0\) \(\forall m\) nên hàm số là hàm bậc nhất với mọi m

Hàm luôn đồng biến

c/ Để hàm là hàm bậc nhất

\(\Leftrightarrow m^2-2m+1\ne0\Rightarrow m\ne1\)

Khi đó \(m^2-2m+1=\left(m-1\right)^2>0\) nên hàm đồng biến

NV
18 tháng 2 2020

\(\left\{{}\begin{matrix}4x^2-4xy+4y^2=4\\x^2+xy+2y^2=4\end{matrix}\right.\)

\(\Rightarrow3x^2-5xy+2y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=\frac{3}{2}x\end{matrix}\right.\)

Thay vào pt đầu:

- Với \(y=x\Rightarrow x^2-x^2+x^2=1\Rightarrow x^2=1\Rightarrow x=...\)

- Với \(y=\frac{3}{2}x\Rightarrow x^2-\frac{3}{2}x^2+\left(\frac{3}{2}x\right)^2=1\Leftrightarrow x^2=\frac{4}{7}\Rightarrow x=...\)

17 tháng 2 2020

(\(\sqrt{1+x}+\sqrt{1-x}\))\(\left(2+2\sqrt{1-x^2}\right)=8\)(1)(đk: \(-1\le x\le1\))
đặt \(\sqrt{1+x}+\sqrt{1-x}\) =a (\(a\ge0\)

=> \(a^2=2+2\sqrt{1-x^2}\)

khi đó

(1)\(\Leftrightarrow a^3=8\Leftrightarrow a=\sqrt{8}=2\) (tm)

=>\(\sqrt{1+x}+\sqrt{1-x}\) =2

\(\Leftrightarrow2+2\sqrt{1-x^2}=4\)

\(\Leftrightarrow2\sqrt{1-x^2}=2\)

\(\Leftrightarrow\sqrt{1-x^2}=1\Leftrightarrow1-x^2=1\)

\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)(tm)

vậy x=0 là nghiệm của phương trình

13 tháng 9 2019

Bình phương cả hai vế ta được :

x+1≥5

=>x≥4

vậy......

17 tháng 2 2020

thiếu j k bạn