Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với m =1 thay vào hệ ta có :
\(\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=\frac{1}{3}\end{matrix}\right.\)
b) \(D=\left|\frac{2;1}{1;m+1}\right|=2\left(m+1\right)-1\)
\(D_x=\left|\frac{m;1}{1;m+1}\right|=m\left(m+1\right)-1\)
\(D_y=\left|\frac{2;m}{1;1}\right|=2-m\)
+) Hệ có nghiệm duy nhất <=> \(D\ne0\Leftrightarrow2m+2-1\ne0\Leftrightarrow m\ne-\frac{1}{2}\)
Nghiệm (x;y) là: \(\left\{{}\begin{matrix}x=\frac{m^2+m-1}{2m+2-1}=\frac{m^2+m-1}{2m +1}\\y=\frac{2-m}{2m+2-1}=\frac{2-m}{2m+1}\end{matrix}\right.\)
+) Hệ vô nghiệm <=> D=0 <=> m=-1/2
Ta có : \(\left\{{}\begin{matrix}D=0\\D_x=\frac{-5}{4}\\D_y=\frac{5}{2}\end{matrix}\right.\)
Hệ vô nghiệm khi m=-1/2
a, - Để hệ phương trình có nghiệm duy nhất thì :
\(\frac{m}{2}\ne\frac{1-m}{1}\)
=> \(2-2m\ne m\)
=> \(m\ne\frac{2}{3}\)
- Thay x = 2, y = -1 vào hệ phương trình ta được :
\(\left\{{}\begin{matrix}2m+\left(m-1\right)=2\\4-1=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3m=3\\3=3\end{matrix}\right.\)
=> m = 1 ( TM )
b, - Để hệ phương trình vô nghiệm thì :
\(\frac{m}{2}=\frac{1-m}{1}\ne\frac{2}{3}\)
=> \(\left\{{}\begin{matrix}\frac{m}{2}=1-m\\\frac{m}{2}\ne\frac{2}{3}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m=2-2m\\3m\ne4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m=\frac{2}{3}\\m\ne\frac{4}{3}\end{matrix}\right.\)
Vậy để hệ phương trình vô nghiệm thì m = \(\frac{2}{3}\) .
\(\left\{{}\begin{matrix}x+my=3\\mx-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3-my\\m\left(3-my\right)-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m-m^2y-3y=1\\x=3-my\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+3\right)=3m-1\\x=3-my\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3m-1}{m^2+3}\\x=3-\frac{m\left(3m-1\right)}{m^2+3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+9}{m^2+3}\\y=\frac{3m-1}{m^2+3}\end{matrix}\right.\)
Khi đó: \(x+y=\frac{m+9+3m-1}{m^2+3}=1\)
\(\Leftrightarrow4m+8=m^2+3\)
\(\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\)( thỏa mãn )
Vậy....
*Hệ phương trình có một nghiệm duy nhất thì \(1-m \ne0 \Rightarrow m\ne1\) khi đó \(\left\{ \begin{array}{l} x = \dfrac{{3 + 2m}}{{1 - m}}\\ y = 3 - \dfrac{{3 + 2m}}{{1 - m}} = \dfrac{{ - 5m}}{{1 - m}} \end{array} \right.\)
*Hệ phương trình vô nghiệm \(\Leftrightarrow1-m=0\Leftrightarrow m=1\)
*Hệ phương trình vô số nghiệm \(\Leftrightarrow \left\{ \begin{array}{l} 1 - m = 0\\ 3 + 2m = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m = 1\\ m = - \dfrac{3}{2} \end{array} \right.\) (vô lí)
\(\Rightarrow\) Không tìm được giá trị $m$ thỏa mãn để hệ phương trình có vô số nghiệm.
Bài làm :
\(D=\left|\frac{m-3;4}{-m;5}\right|=5\left(m-3\right)+4m\)
\(D_x=\left|\frac{3m;4}{4m-1;5}\right|=15m-4\left(4m-1\right)\)
\(D_y=\left|\frac{m-3;3m}{-m;4m-1}\right|=\left(m-3\right)\left(4m-1\right)+3m^2\)
a) Hệ có 1 nghiệm duy nhất (x;y)\(\Leftrightarrow D\ne0\)
<=> \(5m-15+4m\ne0\Leftrightarrow m\ne\frac{15}{9}\)
Nghiệm (x;y) là : \(\left\{{}\begin{matrix}x=\frac{15m-16m+4}{5m-15+4m}=\frac{-m+4}{9m-15}\\y=\frac{4m^2-m-12m+3+3m^2}{5m-15+4m}=\frac{7m^2-13m+3}{9m+15}\end{matrix}\right.\)
b) Hệ vô nghiệm <=> D=0 <=> \(m=\frac{15}{9}\)
Ta có : \(\left\{{}\begin{matrix}D=0\\D_x=\frac{7}{3}\\D_y=\frac{7}{9}\end{matrix}\right.\)
Vậy m=15/9 thì hệ vô nghiệm.