K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Bất phương trình đã cho vô nghiệm khi và chỉ khi  5 x 2   -   x   +   m   ≤   0  nghiệm đúng với mọi x.

    ⇔ 1 - 20m < 0 ⇔ m > 1/20

    Đáp số: m > 1/20

5 tháng 4 2017

câu b
- Xét m = 0. 
Phương trình trở thành: \(-10x-5=0\)\(\Leftrightarrow x=\dfrac{-1}{2}\) .
Khi m = 0 phương trình có nghiệm \(x=\dfrac{1}{2}\) (loại).
Xét \(m\ne0\) (1)

Phương trình vô nghiệm:  => \(\Delta< 0\) \(\Rightarrow25+5m< 0\Rightarrow m< \dfrac{-25}{5}=-5\) (2)

Kết hợp với điều kiện (1) suy ra với \(m>-5\)  thì phương trình vô nghiệm.

 

7 tháng 4 2017

Làm lại:

a)

\(5x^2-x+m\le0\)(a)

để (a)vô nghiệm \(\Rightarrow5x^2-x+m=0\) phải vô nghiệm => \(\Delta=1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)\(mx^2-10x-5\ge0\left(b\right)\)

Để b vô nghiệm cần

(1) \("a"\ne0\Rightarrow m\ne0\)

(2) \("a"< 0\Rightarrow m< 0\)

(3) \(\left[{}\begin{matrix}\Delta\\\Delta'\end{matrix}\right.< 0\Rightarrow\)\(5^2+5m< 0\Rightarrow m< \dfrac{-25}{5}=-5\)

(1)&(2)(3)Kết luận \(m< -5\)

16 tháng 3 2016

ừm...để giải cái đã.Xem nào...
 

4 tháng 3 2019

Lười làm lắm cứ xét từng khoản là được

Đầu tiên giải bất thứ nhất

Ở bất thứ 2 xét 2 trường hợp

- TH 1: \(m\le0\)

- TH2: \(m>0\)

   + \(\hept{\begin{cases}m-x^2>0\\x+m< 0\end{cases}}\)

   +\(\hept{\begin{cases}m-x^2< 0\\x+m>0\end{cases}}\)

7 tháng 4 2017

 

a)

Để \(5x^2-x+m>0\) thì:

\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)

b)

\(mx^2-10x-5< 0\)

Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).

7 tháng 5 2016

Đặt \(t=3^x,t>0\)

Bất phương trình trở thành :

\(m.t^2+9\left(m-1\right)t+m-1>0\)

\(\Leftrightarrow m\left(t^2+9t+1\right)>9t+1\)

\(\Leftrightarrow m>\frac{9t+1}{t^2+9t+1}\)

Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :

\(m>max_{t>0}\frac{9t+1}{t^2+9t+1}\)

Xét hàm số \(f\left(t\right)=\frac{9t+1}{t^2+9t+1};t>0\)

Ta có : \(f'\left(t\right)=\frac{-9t-2}{\left(t^2+9t+1\right)^2}< 0,t>0\)

đây là hàm nghịch biến suy ra \(f\left(t\right)< f\left(0\right)=1\)

Do đó : \(\frac{9t+1}{t^2+9t+1}< 0,t>0\) nên các giá trị cần tìm là \(m\ge1\)

6 tháng 4 2017

a)pt vô nghiệm khi và chỉ khi:

\(\Delta'< 0\)\(\Leftrightarrow\left(2m-3\right)^2-\)\(\left(5m-6\right)\left(m-2\right)>0\Leftrightarrow-m^2+4m+21>0\Leftrightarrow m>-3\)\(m< 7\) (xét dấu tam thức bậc hai)

b) Tương tự câu a

15 tháng 6 2017

m=2 có nghiệm nhaNguyễn Khang Nghi

NV
4 tháng 2 2021

1.

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)

Không tồn tại m thỏa mãn

a ơi giúp e với 

https://hoc24.vn/cau-hoi/tim-gtnn-cua-t2m4-2m2-12m-18.333959553188