\(B=x^2+2x+7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

\(B=\left(x^2+2x+1\right)+6=\left(x+1\right)^2+6\ge6\)

\(minB=6\Leftrightarrow x=-1\)

\(=x^2+2x+1+6\\ =\left(x+1\right)^2+6\\ Vì\left(x+1\right)^2\ge0\\ \Rightarrow\left(x+1\right)^2+6\ge0+6\\ \Rightarrow\left(x+1\right)^2+6\ge6\) 

Dấu "=" \(\Leftrightarrow x+1=0\\ x=-1\)

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

1 tháng 11 2018

\(A=x^2+4x+7\)

\(=\left(x+2\right)^2+3\ge3\)

Vậy MinA = 3 dấu" =" xảy ra khi và chỉ khi x+2=0 <=> x=-2

1 tháng 11 2018

\(A=x^2+4x+7=x^2+4x+4+3\)

                                    \(=\left(x+2\right)^2+3\ge3\)

\(\text{Dấu "=" xảy ra}\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

\(\text{Vậy }A_{min}=3\Leftrightarrow x=-2\)

\(B=2x^2+x=x^2+\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}\)

                          \(=x^2+\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge0+\left(\frac{1}{2}\right)^2-\frac{1}{4}=0\)

\(\text{Dấu "=" xảy ra }\Leftrightarrow x=0\)

\(\text{Vậy}\)\(B_{min}=0\Leftrightarrow x=0\)

Lưu ý: Ở câu b, rất nhiều bạn dễ bị lừa \(x^2+\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)luôn . Khi đó đáp án sẽ sai vì dấu "=" ko xảy ra. Làm như mình thì đúng 100%

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

10 tháng 12 2019

Ta có: A = 2x2 - 4x + 3 = 2(x2 - 2x + 1) + 1 = 2(x - 1)2 + 1

Do 2(x - 1)2 \(\ge\)\(\forall\)x => 2(x - 1)2 + 1 \(\ge\)1

Dấu "=" xảy ra <=> x - 1 = 0  <=> x = 1

Vậy MinA = 1 <=> x = 1

Ta có: B = \(\frac{-7}{x^2+6x+2012}=\frac{-7}{\left(x^2+6x+9\right)+2003}=-\frac{7}{\left(x+3\right)^2+2003}\)

Do (x + 3)2 \(\ge\)\(\forall\)x => (x + 3)2 + 2003 \(\ge\)2003 \(\forall\)x

=> \(\frac{7}{\left(x+3\right)^2+2003}\le\frac{7}{2003}\forall x\) => \(-\frac{7}{\left(x+3\right)^2+2003}\ge-\frac{7}{2003}\forall x\)

Dấu "=" xảy ra <=> x+  3 = 0 <=> x = -3

Vậy MinB = -7/2003 <=> x = -3

28 tháng 3 2018

giải câu b trc nha

= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009

vậy min=2009 khi x=1

28 tháng 3 2018

https://olm.vn//hoi-dap/question/57101.html     

Tham khảo đây nhá bạn

23 tháng 8 2020

Bài làm:

Ta có: \(x^4-x^2+2x+7\)

\(=\left(x^4-2x^2+1\right)+\left(x^2+2x+1\right)+5\)

\(=\left(x^2-1\right)^2+\left(x+1\right)^2+5\ge5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^2-1=0\\x+1=0\end{cases}}\Rightarrow x=-1\)

Vậy \(Min=5\Leftrightarrow x=-1\)

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

1)

ta có: x+2y=1 => x=1-2y

thay vào bt, ta có:

\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1\\ A=6\left(x-\dfrac{4}{2.6}\right)^2+\dfrac{4.6.1-\left(-4\right)^2}{4a}\ge\dfrac{4.6.1-\left(-4\right)^2}{46}=\dfrac{1}{3}\)

A đạt min khi x-1/3=0 => x=1/3

vậy MIN A=1/3 tại x=1/3

10 tháng 4 2018

áp dụng bđt cô si cho 4 số ta có

\(x^4+\dfrac{1}{16}+\dfrac{1}{16}+\dfrac{1}{16}\ge4\sqrt[4]{x^4.\dfrac{1}{16}.\dfrac{1}{16}.\dfrac{1}{16}}\)

\(x^4+\dfrac{3}{16}\ge x.\dfrac{1}{2}\)

cmtt ta có

\(y^4+\dfrac{3}{16}\ge y\dfrac{1}{2}\)

cộng các vế của bđt trên ta có

\(x^4+y^4+\dfrac{3}{8}\ge\dfrac{1}{2}\left(x+y\right)\)

\(C+\dfrac{3}{8}\ge\dfrac{1}{2}\)

\(C\ge\dfrac{1}{8}\)

minC=\(\dfrac{1}{8}\) khi x=y=\(\dfrac{1}{2}\)

26 tháng 7 2016

a. \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) với mọi x

=> (x-1)^2 +4 \(\ge\) vợi mọi x

Pmin=4 <=> x-1=0 <=>x=1

 

 

26 tháng 7 2016

1.

b)\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu = xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\) và \(y+3=0\)

\(\Leftrightarrow x=\frac{1}{2}\) và \(y=-3\)

Vậy GTNN của M là \(\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)và \(y=-3\)