K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Ta thấy:

\(\hept{\begin{cases}\left|x-7\right|\\\left|2y-3\right|\end{cases}\ge}0\)

\(\Rightarrow\left|x-7\right|+\left|2y-3\right|\ge0+0=0\)

\(\Rightarrow F\ge0\)

Dấu = khi {  |x-7|=0 <=>  {x=7

               {  |2y-3|=0 <=> {y=3/2

Vậy Fmin=0 ,=>x=..;y=...

13 tháng 7 2016

Mình hướng dẫn nhé.

Trị tuyệt đối của 1 số luôn lớn hơn hoặc bằng 0

Ở trên F là tổng của 2 trị tuyệt đối khác nhau do biến khác nhau là x và y

nên mỗi trị tuyệt đối lớn hơn hoặc bằng 0 nên tổng của chúng là GTNN của F là 0.

Bạn chỉ ra là khi F=0 thì x=? và y=?

*BT tương tự:

Tìm GTNN của |3-x|+|56+y|+|3x+1|

16 tháng 1 2021

\(F=2x^2+y^2+2y\left(x+1\right)+\left(x+1\right)^2-x^2-2x-1-2x+2\)

\(=\left(y+x+1\right)^2+x^2-4x+1\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x;y\)

=> \(MinF=-3\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

 

10 tháng 1 2018

Giá trị tuyệt đối của 1 số lớn hơn hặc bằng 0, vì vậy nếu là giá trị nhỏ nhất thì |x - 3| hoặc |x - 7| phải = 0

Nếu |x - 3| = 0 

=> x - 3 = 0

          x = 0 + 3

          x = 3

x - 7|. Thay x = 3, ta có:

|3 - 7| = |-4| = 4

Vậy 3 + 4 = 7 => C = 7

Nếu |x - 7| = 0

=> x - 7 = 0

          x = 0 + 7

          x = 7

|x - 3|. Thay x = 7, ta có:

|7 - 3| = |4| = 4

Vậy 4 + 7 = 11 => C = 11

Vì C là Giá trị nhỏ nhất => C = 7

20 tháng 10 2018

\(C=\left|x-3\right|+\left|x-7\right|=\left|x-3\right|+\left|7-x\right|\ge\left|x-3+7-x\right|=\left|4\right|=4\)

( áp dụng bất đẳng thức gttđ : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3>0\\7-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x< 7\end{cases}\Leftrightarrow}3< x< 7}\)

Vậy Cmin = 4 <=> 3<x<7

6 tháng 1 2016

A=10 

B=-7

C=-5

D=-3

E=15

F=3

6 tháng 1 2016

bạn giải chi tiết ra giúp mình đc ko?

 

19 tháng 8 2017

Ai giải đúng 4 câu mik cho 2 cái nha

19 tháng 8 2017

cần chi tiết k

2 tháng 3 2021

Trả lời:

1, A = | x - 3 | + 10 

Vì \(\left|x-3\right|\ge0\forall x\)

nên \(\left|x-3\right|+10\ge10\forall x\)

Dấu = xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của A = 10 khi x = 3

B = -7 + ( x + 1 )2 

Vì \(\left(x+1\right)^2\ge0\forall x\)

nên \(-7+\left(x+1\right)^2\ge-7\forall x\)

Dấu = xảy ra khi x + 1 = 0 <=> x = -1

Vậy GTNN của B = -7 khi x = -1

2, C = -3 - | x + 2 | 

Vì \(\left|x+2\right|\ge0\forall x\)

=> \(-\left|x+2\right|\le0\forall x\)

=> \(-3-\left|x+2\right|\le-3\forall x\)

Dấu = xảy ra khi x + 2 = 0 <=> x = -2

Vậy GTLN của C = -3 khi x = -2

D = 15 - ( x - 2 )2

VÌ \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2\le0\forall x\)

=> \(15-\left(x-2\right)^2\le15\forall x\)

Dấu = xảy ra khi x - 2 = 0 <=> x = 2

Vậy GTLN của D = 15 khi x = 2

6 tháng 7 2019

19 tháng 2 2021

Trả lời:

Bài 1: a,

\(A=\left|x-1\right|+3\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)

Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)

Vậy GTNN của A = 3 khi x = 1

\(B=\left|x-7\right|-4\)

Vì \(\left|x-7\right|\ge0\forall x\)

  \(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)

Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)

Vậy GTNN của B = -4 khi x = 7

b, \(C=-\left|x-3\right|+2\)

Vì \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)

Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)

Vậy GTLN của C = 2 khi x = 3

20 tháng 8 2017

a, Ta có: \(\left|7-x\right|\ge0\Rightarrow-\left|7-x\right|\le0\Rightarrow A=-100-\left|7-x\right|\le-100\)

Dấu "=" xảy ra khi |7 - x| = 0 => x = 7

Vậy MaxA = -100 khi x = 7

b, Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left|2-y\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)

\(\Rightarrow B=-\left(x+1\right)^2-\left|2-y\right|+11\le11\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}-\left(x+1\right)^2=0\\\left|2-y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy MaxB = 11 khi x = -1 và y = 2

c, Ta có: \(\hept{\begin{cases}\left(x+5\right)^2\ge0\\\left(2y-6\right)^2\ge0\end{cases}}\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2\ge0\)

\(\Rightarrow C=\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}\)

Vậy MinC = 1 khi x = -5 và y = 3