
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giá trị tuyệt đối của 1 số lớn hơn hặc bằng 0, vì vậy nếu là giá trị nhỏ nhất thì |x - 3| hoặc |x - 7| phải = 0
Nếu |x - 3| = 0
=> x - 3 = 0
x = 0 + 3
x = 3
x - 7|. Thay x = 3, ta có:
|3 - 7| = |-4| = 4
Vậy 3 + 4 = 7 => C = 7
Nếu |x - 7| = 0
=> x - 7 = 0
x = 0 + 7
x = 7
|x - 3|. Thay x = 7, ta có:
|7 - 3| = |4| = 4
Vậy 4 + 7 = 11 => C = 11
Vì C là Giá trị nhỏ nhất => C = 7
\(C=\left|x-3\right|+\left|x-7\right|=\left|x-3\right|+\left|7-x\right|\ge\left|x-3+7-x\right|=\left|4\right|=4\)
( áp dụng bất đẳng thức gttđ : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\))
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-3>0\\7-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x< 7\end{cases}\Leftrightarrow}3< x< 7}\)
Vậy Cmin = 4 <=> 3<x<7

Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2

Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3

tương tự baì đẳng trên mình vừa làm đấy
|A| <= 0 với mọi A
thì -|A| <= 0 vứi mọi A
tương tự với bình phương một số

Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
Cảm ơn nhé mình tick r nha