Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(B=-2x^2+4x+1\)
\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
A) \(A=-3x^2+x+1\)
\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)
\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)
Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)
Dấu "=" xảy ra khi:
\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)
B) \(B=2x^2-8x+1\)
\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(B=2\left(x-2\right)^2-7\)
Mà: \(2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra khi:
\(x-2=0\Rightarrow x=2\)
Vậy: \(B_{min}=2.khi.x=2\)
2/
a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)
Dấu "=" xảy ra khi x=-3/2
Vậy Amin=-19/2 khi x=-3/2
b,bài này phải tìm min
\(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi x = 2
Vậy Bmin=4 khi x=2
Ta có : x2 + 4x
= x2 + 4x + 4 - 4
= (x + 2)2 - 4
Mà ; (x + 2)2 \(\ge0\forall x\)
Nên : (x + 2)2 - 4 \(\ge-4\forall x\)
Vậy GTNN của biểu thức là -4 khi x = -2
Ta có : 4x2 - 4x - 1
= (2x)2 - 4x + 1 - 1
= (2x - 1)2 - 1
Mà : (2x - 1)2 \(\ge0\forall x\)
Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)
Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)
A, -2x^2<,=0
4-2x^2<,=4
dấu = xảy ra <=> 2x^2=0
<=>x=0
vậy GTLN của A=4 đạt đc khi x=0
\(A=4-2x^2\le4\)(Vì \(x^2\ge0\))
Dấu '' = '' xảy ra khi: \(x=0\)
Vậy \(MaxA=4\Leftrightarrow x=0\)
\(B=-3x^2+2x-5\)
\(B=-3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)-\frac{14}{3}\)
\(B=-\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le\frac{-14}{3}\)
Dấu '' = '' xảy ra khi:
\(x-\frac{1}{3}=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy \(MaxB=\frac{-14}{3}\Leftrightarrow\frac{1}{3}\)
\(A=\frac{3}{2x^2+2x+3}=\frac{3}{\left(2x^2+2x+\frac{1}{2}\right)+\frac{5}{2}}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}\)
\(A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(2\left(x+\frac{1}{2}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)
Vậy GTLN của \(A\) là \(\frac{6}{5}\) khi \(x=\frac{-1}{2}\)
Chúc bạn học tốt ~
`A=-(x^2-2x)-(y^2+6y)+9`
`=-(x^2-2x+1)-(y^2+6y+9)+19`
`=-(x-1)^2-(y+3)^2+19<=19`
Dấu "=" xảy ra khi `x=1` và `y=-3`
`B=-(2x-5)^2+6|2x+5|+4`
`=-[(2x-5)^2-6|2x-5|+9]+13`
`=-(|2x-5|-3)^2+13<=13`
Dấu "=" xảy ra khi `|2x-5|=3<=>[(x=4),(x=1):}`
a) \(2x^2+2x+5=2\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)+5-\frac{2}{4}\)
\(=2\left[\left(x+\frac{1}{2}\right)^2\right]+\frac{9}{2}\)
=> Giá trị nhỏ nhất của biểu thức bằng \(\frac{9}{2}\) khi \(x=-\frac{1}{2}\)
b) Biểu thức câu b trái dấu với biểu thức câu a nên ta suy ra giá trị lớn nhất của biểu thức câu b là \(-\frac{9}{2}\)