K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

a) \(2x^2+2x+5=2\left(x^2+2.\frac{1}{2}x+\frac{1}{4}\right)+5-\frac{2}{4}\)

   \(=2\left[\left(x+\frac{1}{2}\right)^2\right]+\frac{9}{2}\)

=> Giá trị nhỏ nhất của biểu thức bằng \(\frac{9}{2}\) khi \(x=-\frac{1}{2}\)

b) Biểu thức câu b trái dấu với biểu thức câu a nên ta suy ra giá trị lớn nhất của biểu thức câu b là \(-\frac{9}{2}\)

b: Ta có: \(B=-2x^2+4x+1\)

\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)

\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)

\(=-2\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

25 tháng 10 2023

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

25 tháng 10 2023

câu a) bạn viết sai đề rồi

 

8 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks

3 tháng 7 2018

2/

a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

Dấu "=" xảy ra khi x=-3/2

Vậy Amin=-19/2 khi x=-3/2

b,bài này phải tìm min 

 \(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi x = 2

Vậy Bmin=4 khi x=2

31 tháng 10 2018

Bài 2)Ta có:

\(2x^2+6x-5\)

\(=2x^2+6x+\frac{9}{2}-\frac{19}{2}\)

\(=2\left(x^2+3x+\frac{9}{4}\right)-\frac{19}{2}\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

19 tháng 7 2017

Ta có : x2 + 4x 

= x2 + 4x + 4 - 4

= (x + 2)2 - 4 

Mà ; (x + 2)\(\ge0\forall x\)

Nên : (x + 2)2 - 4 \(\ge-4\forall x\)

Vậy GTNN của biểu thức là -4 khi x = -2

19 tháng 7 2017

Ta có : 4x2 - 4x - 1

= (2x)2 - 4x + 1 - 1

= (2x - 1)2 - 1

Mà : (2x - 1)2 \(\ge0\forall x\)

Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)

Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)

19 tháng 7 2017

giúp mấy câu tiếp theo với

14 tháng 7 2019

A,   -2x^2<,=0

4-2x^2<,=4

dấu = xảy ra <=> 2x^2=0

                     <=>x=0

vậy GTLN của A=4 đạt đc khi x=0

1 tháng 7 2021

\(A=4-2x^2\le4\)(Vì \(x^2\ge0\))

Dấu '' = '' xảy ra khi: \(x=0\)

Vậy \(MaxA=4\Leftrightarrow x=0\)

\(B=-3x^2+2x-5\)

\(B=-3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)-\frac{14}{3}\)

\(B=-\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le\frac{-14}{3}\)

Dấu '' = '' xảy ra khi: 

\(x-\frac{1}{3}=0\)

\(\Leftrightarrow x=\frac{1}{3}\)

Vậy \(MaxB=\frac{-14}{3}\Leftrightarrow\frac{1}{3}\)

23 tháng 10 2018

\(A=\frac{3}{2x^2+2x+3}=\frac{3}{\left(2x^2+2x+\frac{1}{2}\right)+\frac{5}{2}}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}\)

\(A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(2\left(x+\frac{1}{2}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)

Vậy GTLN của \(A\) là \(\frac{6}{5}\) khi \(x=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

1 tháng 10 2021

`A=-(x^2-2x)-(y^2+6y)+9`

`=-(x^2-2x+1)-(y^2+6y+9)+19`

`=-(x-1)^2-(y+3)^2+19<=19`

Dấu "=" xảy ra khi `x=1` và `y=-3`

`B=-(2x-5)^2+6|2x+5|+4`

`=-[(2x-5)^2-6|2x-5|+9]+13`

`=-(|2x-5|-3)^2+13<=13`

Dấu "=" xảy ra khi `|2x-5|=3<=>[(x=4),(x=1):}`