K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

\(A=\dfrac{2x+1}{x^2+2}\)

*Min A:

Ta có: \(A=\dfrac{2x+1}{x^2+2}\)

\(=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{\left(x^2+4x+4\right)-\left(x^2+2\right)}{2\left(x^2+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x^2+1\right)}+\dfrac{1}{2}\ge\dfrac{1}{2},\forall x\in R\)

Vậy \(Min_A=\dfrac{1}{2}khi\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

*Max A:

Ta có: \(A=\dfrac{2x+1}{x^2+2}\)

\(=\dfrac{x^2+2-x^2+2x-1}{x^2+2}\)

\(=\dfrac{(x^2+2)-(x^2-2x+1)}{x^2+2}\)

\(=\dfrac{x^2+2}{x^2+2}-\dfrac{\left(x-1\right)^2}{x^2+2}\)

\(=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le0,\forall x\in R\)

Vậy \(Max_A=1khi\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

25 tháng 2 2021

`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`

`<=>x ne 4,x me -1`

`b,ĐKXĐ:4x^2-25 ne 0`

`<=>(2x-5)(2x+5) ne 0`

`<=>x ne +-5/2`

`c,ĐKXĐ:8x^3+27 ne 0`

`<=>8x^3 ne -27`

`<=>2x ne -3`

`<=>x ne -3/2`

`d,2x+2 ne 0,4y^2-9 ne 0`

`<=>2x ne -2,(2y-3)(2y+3) ne 0`

`<=>x ne -1,y ne +-3/2`

b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)

d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)

Đề sai rồi bạn

10 tháng 1 2021

a) đặt mẫu chứng là x-2

1: \(B=\dfrac{2x+1-x^2+2x^2-3x-1}{x\left(2x+1\right)}=\dfrac{x^2-x}{x\left(2x+1\right)}=\dfrac{x-1}{2x+1}\)

2: \(C=A:B\)

\(=\dfrac{x-1}{x^2}:\dfrac{x-1}{2x+1}=\dfrac{2x+1}{x^2}\)

\(C+1=\dfrac{2x+1+x^2}{x^2}=\dfrac{\left(x+1\right)^2}{x^2}>=0\)

=>C>=-1

9 tháng 5 2021

a, Với \(x=3\)\(=>A=\frac{x-1}{2}=\frac{3-1}{2}=\frac{2}{2}=1\)

Vậy A = 1 khi x = 3

b, Ta có : \(B=\frac{1}{x}-\frac{x}{2x+1}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)

\(=\frac{2x+1}{x\left(2x+1\right)}-\frac{x^2}{x\left(2x+1\right)}+\frac{2x^2-3x-1}{x\left(2x+1\right)}\)

\(=\frac{x^2-3x+2x+1-1}{x\left(2x+1\right)}=\frac{x^2-x}{x\left(2x+1\right)}=\frac{x\left(x-1\right)}{x\left(2x+1\right)}=\frac{x-1}{2x+1}\)

9 tháng 5 2021

Ta có : \(A=\frac{x-1}{2};B=\frac{x-1}{2x+1}\)

\(=>C=A:B=\frac{x-1}{2}:\frac{x-1}{2x+1}=\frac{2x+1}{2}=x+\frac{1}{2}\)

đề sai bạn ơi 

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)

15 tháng 3 2021

Cảm ơn anh. Nhưng anh rút gọn sai rồi với lại em đang cần câu b ạ.