![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(x^2+10x+25=x^2+5x+5x+25\)
\(=\left(x+5\right)^2\)
b, \(x^2-12x+36=x^2-6x-6x+36\)
\(=\left(x-6\right)^2\)
c, \(9x^2+4+12x=9x^2+6x+6x+4\)
\(=3x\left(3x+2\right)+2\left(3x+2\right)=\left(3x+2\right)^2\)
d, \(x^2+49-14x=x^2-7x-7x+49\)
\(=\left(x-7\right)^2\)
e, \(9x^4+24x^2+16=9x^4+12x^2+12x^2+16\)
\(=3x^2\left(3x^2+4\right)+4\left(3x^2+4\right)=\left(3x^2+4\right)^2\)
g,\(4x^2-12xy+9y^2=4x^2-6xy-6xy+9y^2\)
\(=2x\left(2x-3y\right)-3y\left(2x-3y\right)=\left(2x-3y\right)^2\)
Chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(4x^2-12x+y^2-4y+13\)
\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)
\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
2) \(x^2+y^2+2y-6x+10\)
\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)
\(=\left(x+1\right)^2+\left(y-3\right)^2\)
3) \(4x^2+9y^2-4x+6y+2\)
\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)
\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)
4) \(y^2+2y+5-12x+9x^2\)
\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)
\(=\left(y+1\right)^2+\left(3x-2\right)^2\)
5) \(x^2+26+6y+9y^2-10x\)
\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)
\(=\left(x-5\right)^2+\left(3y+1\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : 12x2 + 8x = 0
<=> 4x(3x + 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x=0\\3x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)
a, 4x(3x - 2) = 0
=> x=0 hoac x= 2/3
b, 2x2 + 10x - x -5 =0
<=> (x + 5)(2x-1) =0
=> x = -5 hoac x = 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a. A = x2 + 12x + 39 = (x2 + 12x + 36) + 3
= ( x2 + 2.x.6 + 62 ) +3
= ( x+6)2 + 3
Vì ( x + 6 )2 \(\ge\) 0 ( dấu = xảy ra khi x = 1)
nên A \(\ge\) 3
Vậy GTNN của A là 3 ( khi x = 1)
a. A = x2 + 12x + 39 =(x2 + 12x + 36 ) + 3= (x+6)2 + 3
Vì (x+6)2\(\ge\) 0 ( dấu = xảy ra khi x = 6)
nên A \(\ge\) 3
Vậy: GTNN của A là 3 ( khi x = 6 )
b. B= 9x2 - 12x = (9x2 - 12x + 4) - 4 = \(\left[\text{(3x)^2 - 2.3x.2 + 2^2}\right]\) - 4
= (3x-2)2 - 4
Vì (3x-2)2\(\ge\) 0 ( dấu = xảy ra \(\Leftrightarrow\) 3x-2 = 0 \(\Leftrightarrow\) x = \(\dfrac{2}{3}\)
nên B \(\ge\) 4
Vậy: GTNN của B là 4 ( \(\Leftrightarrow\) x=\(\dfrac{2}{3}\) )
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2-10x+30=x^2-10x+25+5=\left(x-5\right)^2+5\ge5\)
Vậy GTNN của A là 5 khi x = 5
\(B=4x^2+4x+9=4x^2+4x+1+8=\left(2x+1\right)^2+8\ge8\)
Vậy GTNN của B là 8 khi x = \(-\dfrac{1}{2}\)
\(C=9x^2-12x+20=9x^2-12+4+16=\left(3x-2\right)^2+16\ge16\)
Vậy GTNN của C là 16 khi x = \(\dfrac{2}{3}\)
\(D=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN của D là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\)
\(E=2x^2+3x+5=2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{31}{8}=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{31}{8}\ge\dfrac{31}{8}\)
Vậy GTNN của E là \(\dfrac{31}{8}\) khi x = \(-\dfrac{3}{4}\)
\(F=3x^2-7x+6=3\left(x^2-\dfrac{7}{3}x+\dfrac{49}{36}\right)+\dfrac{23}{12}=\left(x-\dfrac{7}{6}\right)^2\ge\dfrac{23}{12}\)Vậy GTNN của F là \(\dfrac{23}{12}\) khi x = \(\dfrac{7}{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(\dfrac{15xy}{10x^2y}\)
= \(\dfrac{3.5xy}{2.5xyx}\)
= \(\dfrac{3}{2x}\)
d) \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)
= \(\dfrac{3.2x\left(x+5\right)\left(x+5\right)^2}{x.2x\left(x+5\right)}\)
= \(\dfrac{3\left(x+5\right)^2}{x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)
2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)
3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)
\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)
ta có : \(\left(3x+2\right)^2\ge0\forall x\) và \(\left(2y-2\right)^2\ge0\forall y\)
\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)
\(\Rightarrow\) phương trình vô nghiệm
\(a)\) Đặt \(A=-9x^2-12x+5\) ta có :
\(-A=9x^2+12x-5\)
\(-A=\left(9x^2+12x+16\right)-21\)
\(-A=\left(3x+4\right)^2-21\ge-21\)
\(A=-\left(3x+4\right)^2+21\le21\)
Dấu "=" xảy ra khi và chỉ khi \(-\left(3x+4\right)^2=0\)
\(\Leftrightarrow\)\(3x+4=0\)
\(\Leftrightarrow\)\(3x=-4\)
\(\Leftrightarrow\)\(x=\frac{-4}{3}\)
Vậy GTLN của \(A\) là \(21\) khi \(x=\frac{-4}{3}\)
Chúc bạn học tốt ~
A, Đặt \(B=-10x^2-12x+33\)
\(=-10\left(x^2+\frac{6}{5}x-\frac{33}{10}\right)\)
\(=-10\left(x^2+\frac{6}{5}x+\left(\frac{3}{5}\right)^2-\frac{183}{50}\right)\)
\(=-10[\left(x+\frac{3}{5}\right)^2-\frac{183}{50}]\)
\(=-10\left(x+\frac{3}{5}\right)^2+\frac{183}{5}\le\frac{183}{5}\)
dấu ''='' xảy ra khi và chỉ khi \(\left(x+\frac{3}{5}\right)^2=0\Leftrightarrow x=-\frac{3}{5}\)