Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(4x^2-12x+y^2-4y+13\)
\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)
\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)
\(=\left(2x-3\right)^2+\left(y-2\right)^2\)
2) \(x^2+y^2+2y-6x+10\)
\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)
\(=\left(x+1\right)^2+\left(y-3\right)^2\)
3) \(4x^2+9y^2-4x+6y+2\)
\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)
\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)
4) \(y^2+2y+5-12x+9x^2\)
\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)
\(=\left(y+1\right)^2+\left(3x-2\right)^2\)
5) \(x^2+26+6y+9y^2-10x\)
\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)
\(=\left(x-5\right)^2+\left(3y+1\right)^2\)
Bài 1:Tìm x,y biết:
a)\(x^2-6x+y^2+10y+34\)
=>\(\left(x^2-2.x.3+3^2\right)+\left(y^2+2.y.5+5^2\right)=0\)
=>\(\left(x-3\right)^2+\left(y+5\right)^2=0\)
=>\(\left\{{}\begin{matrix}x-3=0\\y+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
1) \(9x^2+y^2-10y-12x+29=0\)
\(\Leftrightarrow\left(9x^2-12x+4\right)+\left(y^2-10y+25\right)=0\)
\(\Leftrightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\)
ta có : \(\left(3x-2\right)^2\ge0\forall x\) và \(\left(y-5\right)^2\ge0\forall y\)
\(\Rightarrow\left(3x-2\right)^2+\left(y-5\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2\right)^2=0\\\left(y-5\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=0\\y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=5\end{matrix}\right.\)
vậy \(x=\dfrac{2}{3};y=5\)
2) câu này đề sai rồi nha
3) \(x^2+29+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)+9=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9=0\)
ta có : \(\left(x+4\right)^2\ge0\forall x\) và \(\left(3y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x+4\right)^2+\left(3y-2\right)^2+9\ge9>0\forall x;y\)
vậy phương trình vô nghiệm
1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)
=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)
=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)
=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)
Ta thấy: \((5x-2)^2\ge0\)
=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)
2. \(f\left(x\right)=4x^2-28x+50\)
=> \(f\left(x\right)=(4x^2-28x+49)+1\)
=> \(f\left(x\right)=(2x-7)^2+1\)
Ta thấy: \((2x-7)^2\ge0\)
=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)
3. \(f\left(x\right)=-16x^2+72x-82\)
=> \(f\left(x\right)=-(16x^2-72x+82)\)
=> \(f\left(x\right)=-(16x^2-72x+81+1)\)
=> \(f\left(x\right)=-[(4x-9)^2+1]\)
Ta thấy: \((4x-9)^2\ge0\)
=> \((4x-9)^2+1\ge1>0\)
=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)
5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)
=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)
=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)
Ta thấy: \((2x-3)^2\ge0\)
\((3y+1)^2\ge0\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)
1)
a) \(2x^2-12x+18+2xy-6y\)
\(=2x^2-6x-6x+18+2xy-6y\)
\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)
\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)
\(=\left(x-3\right)\left(2y+2x-6\right)\)
\(=2\left(x-3\right)\left(y+x-3\right)\)
b) \(x^2+4x-4y^2+8y\)
\(=x^2+4x-4y^2+8y+2xy-2xy\)
\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)
\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)
\(=\left(2y+x\right)\left(-2y+x+4\right)\)
2) \(5x^3-3x^2+10x-6=0\)
\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)
Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)
\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)
\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Bài làm
a) 2x2 - 12x + 18 + 2xy - 6y
= 2x2 - 6x - 6x + 18 + 2xy - 6y
= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )
= 2x( y + x - 3 ) - 6( y + x - 3 )
= ( 2x - 6 ) ( y + x - 3 )
# Học tốt #
a) \(x^2-8x+y^2+6y+25=0\)
\(\left(x-8\right)x+y\left(y+6\right)+25=0\)
\(x^2+y^2+6y+25=8x\)
\(\Rightarrow x=4,y=-3\)
b ) 4x2-4x+9y2 -12y +5
<=> [( 2x )2 - 4x + 1 ] [ (3y) 2 - 12y + 4 )] = 0
<=> ( 2x - 1 )2 + ( 3y - 2 )2 =0 ( Vì (2x -1)2 >=0 , ( 3y - 2 )2 >= 0 )
<=> 2x - 1 = 0 và 3y -2 = 0
<=> x = 1/2 và y = 2/3
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
1) \(4x^2+4x+6y+9y^2+2=0\Leftrightarrow\left(4x^2+4x+1\right)+\left(9y^2+6y+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)^2+\left(3y+1\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\y=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{-1}{2};y=\dfrac{-1}{3}\)
2) \(25x^2+9y^2-10x+12y+5=0\Leftrightarrow\left(25x^2-10x+1\right)+\left(9y^2+12y+4\right)=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(3y+2\right)^2=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(5x-1\right)^2=0\\\left(3y+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-1=0\\3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=1\\3y=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=\dfrac{-2}{3}\end{matrix}\right.\)
vậy \(x=\dfrac{1}{5};y=\dfrac{-2}{3}\)
3) \(9x^2+4y^2+12x-8y+17=0\Leftrightarrow\left(9x^2+12x+4\right)+\left(4y^2-8y+4\right)+9=0\)
\(\Leftrightarrow\left(3x+2\right)^2+\left(2y-2\right)^2+9=0\)
ta có : \(\left(3x+2\right)^2\ge0\forall x\) và \(\left(2y-2\right)^2\ge0\forall y\)
\(\Rightarrow\) \(\left(3x+2\right)^2+\left(2y-2\right)^2+9\ge9>0\forall x;y\)
\(\Rightarrow\) phương trình vô nghiệm