Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(y=\frac{x}{x^2+1}\Rightarrow y.\left(x^2+1\right)=x\Rightarrow yx^2+y-x=0\)
\(\Delta=1-4y^2\)
Để y xác định thì \(\Delta\ge0\Rightarrow1-4y^2\ge0\Leftrightarrow\frac{-1}{2}\le y\le\frac{1}{2}\)
Vậy GTNN của phân thức trên là -1/2 tại x=-1
GTLN của phên thức trên là 1/2 tại x=1
GTLN của A là 2/3
GTNN của A là số ko tìm đc hay nói là lớn hơn -1
\(x^2\)luôn cho ra kết là lớn hơn 0. Mà \(x+1< x^2\)Cứ thế cho ra số lớn hơn -1. Đơn giản vì \(x+1< x^2+x+1\)
+) GTNN
Ta có :\(3A=\frac{3x+3}{x^2+x+1}=\frac{-x^2-x-1+x^2+4x+4}{x^2+x+1}=\frac{-\left(x^2+x+1\right)+\left(x+2\right)^2}{x^2+x+1}\)
\(=-1+\frac{\left(x+1\right)^2}{x^2+x+1}\ge-1\) \(\Rightarrow A\ge-\frac{1}{3}\)Đạt GTNN là \(-\frac{1}{3}\)
Đạt được khi \(\frac{\left(x+1\right)^2}{x^2+x+1}=0\Rightarrow x=-1\)
+) GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\)Đạt GTLN là 1
Đạt được khi \(\frac{x^2}{x^2+x+1}=0\Rightarrow x=0\)
ĐKXĐ: ...
\(A=-\left(2-x\right)+\sqrt{2-x}-\frac{1}{4}+\frac{9}{4}\)
\(A=-\left(2-x-\sqrt{2-x}+\frac{1}{4}\right)+\frac{9}{4}\)
\(A=-\left(\sqrt{2-x}-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
\(A_{max}=\frac{9}{4}\) khi \(\sqrt{2-x}=\frac{1}{2}\Rightarrow x=\frac{7}{4}\)
\(A=\frac{x}{\left(x+2019\right)^2}\)
Với \(x\le0\Rightarrow A\le0\)
Với \(x>0\Rightarrow A=\frac{x}{x^2+4038x+2019^2}=\frac{1}{x+\frac{2019^2}{x}+4038}\)
\(\Rightarrow A\le\frac{1}{2\sqrt{x.\frac{2019^2}{x}}+4038}=\frac{1}{8076}\)
\(\Rightarrow A_{max}=\frac{1}{8076}\) khi \(x=2019\)
\(F=1-\sqrt{x^2-2x+2}=1-\sqrt{\left(x-1\right)^2+1}\)( Điều kiện: \(x\in R\))
Ta có \(\left(x-1\right)^2\ge0, \forall x \Leftrightarrow\left(x-1\right)^2+1\ge1, \forall x \Leftrightarrow\sqrt{\left(x-1\right)^2+1} \ge1, \forall x\)
\(\Leftrightarrow-\sqrt{\left(x-1\right)^2+1}\le-1, \forall x \Leftrightarrow1-\sqrt{\left(x-1\right)^2+1}\le0, \forall x\Leftrightarrow F\le0, \forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)( thỏa điều kiện )
Vậy GTLN của F là 0 tại x = 1
\(A=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có : \(x+\sqrt{x}+1=\left(x+2.\dfrac{1}{2}.\sqrt{x}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{2.4}{3}=\dfrac{8}{3}\)
Vậy GTLN của A là \(\dfrac{8}{3}\). Dấu "=" xảy ra khi và chỉ khi \(x=-\dfrac{1}{2}\)
Mà x > 0, nên trường hợp này ta không chấp nhận .
Ta có : Vì x > 0 , \(\Rightarrow x+\sqrt{x}+1\ge1\)
Vậy giá trị nhỏ nhất là \(1\). Dấu "=" xảy ra khi và chỉ khi \(x=1.\)