Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn cứ xét mẫu là được
mẫu của chúng luôn luôn > hoặc = 0
chỉ cần xét tử thôi nha bạn
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
A = \(x^2+3x-7=x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{37}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{37}{4}\ge-\frac{37}{4}\)
\(\Rightarrow\)min A = \(-\frac{37}{4}\Leftrightarrow x=-\frac{3}{2}\)
B = \(x-5\sqrt{x}-1\) ĐKXĐ: \(x\ge0\)
\(=x-2\sqrt{x}\frac{5}{2}+\frac{25}{4}-\frac{29}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
\(\Rightarrow\)min B = \(-\frac{29}{4}\Leftrightarrow x=\frac{25}{4}\)( thỏa mãn)
C = \(\frac{-4}{\sqrt{x}+7}\) ĐKXĐ:\(x\ge0\)
Ta có: \(\sqrt{x}+7\ge7\Rightarrow\frac{4}{\sqrt{x}+7}\le\frac{4}{7}\)\(\Leftrightarrow\frac{-4}{\sqrt{x}+7}\ge-\frac{4}{7}\)
\(\Rightarrow\)min C = \(-\frac{4}{7}\Leftrightarrow x=0\)
D = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)
\(=1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)
\(\Rightarrow\)min D = \(\frac{1}{3}\Leftrightarrow x=0\)
E = \(\frac{x+7}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)
\(=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}-6\ge2\sqrt{16}-6=2\)
\(\Rightarrow\)min E = \(2\Leftrightarrow x=1\)(thỏa mãn)
F = \(\frac{x^2+3x+5}{x^2}\) ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow\)\(x^2\left(F-1\right)-3x-5=0\)
△ = \(3^2+20\left(F-1\right)\ge0\)\(\Leftrightarrow F\ge\frac{11}{20}\)
\(\Rightarrow\)min F = \(\frac{11}{20}\Leftrightarrow x=-\frac{10}{3}\)( thỏa mãn)
P=2(x^2+6xy)/(1+2xy+2y^2)
=2(x^2+6xy)/(x^2+2xy+3y^2)
*y=0=>P=2
*y#0:
Chia cả tử và mẫu của P cho y^2.
Đặt x/y=a,ta có:
P=2(a^2+6a)/(a^2+2a+3)
<=>(P-2)a^2+2(P-6)a+3P=0
∆'=(P-6)^2-3P(P-2)
=-P^2-3P+18>=0
<=>(P+6)(P-3)=<0
<=>-6=<P=<3
Vậy maxP=3<=>x/y=3 và x^2+y^2=1<=>x=±3/2;y=±1/2
MinP=-6<=>x/y=-3/2 và x^2+y^2=1<=>x=±1/√13;y=-+2/√13