Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cả 2 biểu thức này đều ko tồn tại GTNN
GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)
bạn nói với mình điều kiện x>2 vậy làm như sau:
Đặt:\(A=\frac{3x-x^2-18}{x-2}=-\frac{x^2-3x+18}{x-2}=-\frac{x^2-4x+4+x-2+16}{x-2}\)
\(=-\frac{\left(x-2\right)^2+\left(x-2\right)+16}{x-2}\)\(=-\left(x-2+1+\frac{16}{x-2}\right)\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-2+\frac{16}{x-2}\ge2\sqrt{\left(x-2\right).\frac{16}{x-2}}=8\)
=>\(x-2+\frac{16}{x-2}+1\ge9\)=>\(A=-\left(x-2+1+\frac{16}{x-2}\right)\le-9\)
=> maxA=-9 <=> x=6
bạn kham khảo link : https://olm.vn/hoi-dap/detail/88594630023.html
\(A=3x^2-x+2\)
\(A=3.\left[x^2-2.\frac{1}{6}x+\left(\frac{1}{6}\right)^2\right]+\frac{71}{36}\)
\(A=3.\left(x-\frac{1}{6}\right)^2+\frac{71}{36}\)
Ta có: \(3.\left(x-\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow3.\left(x-\frac{1}{6}\right)^2+\frac{71}{36}\ge\frac{71}{36}\forall x\)
\(A=\frac{71}{36}\Leftrightarrow3.\left(x-\frac{1}{6}\right)^2=0\Leftrightarrow x=\frac{1}{6}\)
Vậy \(A_{min}=\frac{71}{36}\Leftrightarrow x=\frac{1}{6}\)
Tham khảo ~
sai, parabol úp
cái này đáng ra là tìm giá trị lớn nhất chứ không phải nhỏ nhất
p = 2 + x - x2
P = -x2 + x + 2
P = - ( x2 - 2. \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)) + \(\dfrac{9}{4}\)
P = - (x - \(\dfrac{1}{2}\))2 + \(\dfrac{9}{4}\)
- ( x - 1/2 ) 2 ≤ 0 ⇔ p ≤ \(\dfrac{9}{4}\)⇔ P(max) = 9/4 dấu = xảy ra khi x = 1/2