Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)
\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)
\(=1-\frac{1}{\left|x-2019\right|+2021}\)
\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)
Dấu "=" xảy ra tại \(x=2019\)
Bài giải
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN
Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019
\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)
\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)
\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)
b, tìm x,y biết |x-2018|+|y+2019|=0
\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)
vậy x=2018 ; y=-2019
a)
ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)
mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)
Ta có: \(A=\left|x-2018\right|+\left|2019-x\right|+\left|x-2020\right|\)
\(A=\left(\left|x-2018\right|+\left|2020-x\right|\right)+\left|2019-x\right|\)
\(\Rightarrow A\ge\left|x-2018+2020-x\right|+\left|2019-x\right|=2+\left|2019-x\right|\)
Dấu "=" xảy ra <=> \(\left(x-2018\right)\left(2020-x\right)\ge0\)
\(\Rightarrow\left(x-2018\right)\left(x-2020\right)\le0\)
\(\Rightarrow\hept{\begin{cases}x-2018\ge0\\x-2020\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2018\\x\le2020\end{cases}\Rightarrow}2018\le x\le2020}\)
Và \(\left|2019-x\right|\ge0\), Min (A) = 2 <=> |2019-x| = 0 <=> x= 2019
\(A=\left|2018-x\right|+\left|2019-x\right|+\left|2020-x\right|\)
\(=\left|2018-x\right|+\left|2019-x\right|+\left|x-2020\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) :
\(A\ge\left|2018-x+x-2020\right|+\left|2019-x\right|=2+\left|2019-x\right|\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2018-x\right)\left(x-2020\right)\ge0;2019-x=0\Leftrightarrow x=2019\left(tm\right)\)
Vậy GTNN của A là 2 tại x=2019
\(A=\left(|2018-x|+|2020-x\right)+|2019-x|\)
Đặt \(B=|2018-x|+|2020-x|\)
\(=|2018-x|+|x-2020|\ge|2018-x+x-2020|\)
Hay \(B\ge2\left(1\right)\)
Dấu "=" xảy ra\(\Leftrightarrow\left(2018-x\right)\left(x-2020\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}2018-x\ge0\\x-2020\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2018-x< 0\\x-2020< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le2018\\x\ge2020\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x>2018\\x< 2020\end{cases}}\)
\(\Leftrightarrow2018< x< 2020\)
Đặt \(C=|2019-x|\)
Vì \(|2019-x|\ge0;\forall x\)
Hay \(C\ge0;\forall x\left(2\right)\)
Dấu "=" xảy ra\(\Leftrightarrow2019-x=0\)
\(\Leftrightarrow x=2019\)
Từ (1) và (2) \(\Rightarrow B+C\ge2+0\)
Hay \(A\ge2\)
Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}2018< x< 2020\\x=2019\end{cases}\Leftrightarrow}x=2019\)
Vậy MIN A=2 \(\Leftrightarrow x=2019\)
a) \(A\left(x\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
b) \(A\left(x\right)=0\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
c) \(A=\left|x-1\right|+\left|x-2019\right|=\left|x-1\right|+\left|2019-x\right|\ge\left|x-1+2019-x\right|=2018\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1\ge0\\2019-x\ge0\end{cases}\Rightarrow}1\le x\le2019\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$
$|x-2020|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$
Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$
Tức là $x=2020$
Ta có: |x - 1| = |1 - x|
Lại có: A = |x - 2019| + |1 - x| ≥ |x - 2019 + 1 - x| = |-2018| = 2018
Dấu " = " xảy ra <=> (x - 2019)(1 - x) ≥ 0
Th1: \(\hept{\begin{cases}x-2019\ge0\\1-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2019\\x\le1\end{cases}}\)(Vô lý)
Th2: \(\hept{\begin{cases}x-2019\le0\\1-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2019\\x\ge1\end{cases}}\Rightarrow1\le x\le2019\)
Vậy GTNN A = 2018 khi 1 ≤ x ≤ 2019