K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 A=(x+5)^2+(y-9)^2+2019\(\ge\)2019

Dấu "=" xảy ra <=>\(\hept{\begin{cases}x+5=0\\y-9=0\end{cases}}\)=>\(\hept{\begin{cases}x=-5\\y=9\end{cases}}\)

Vậy minA=2019<=>\(\hept{\begin{cases}x=-5\\y=9\end{cases}}\)

9 tháng 4 2019

A=(x+5)^2+(y-9)^2+2019 

Vì (x+5)^2 và (y-9)^2 \(\ge\)0

Dấu"="xảy ra <=> \(\hept{\begin{cases}x+5=0\\y-9=0\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=9\end{cases}}}\)

Vậy.... (tự ghi)

B= x^2-2x+5=(x-1)^2+4 \(\ge4\)(vì  (x-1)^2\(\ge0\))

Dấu "=" xảy ra <=> x-1=0 =>x=1

Vậy Max B=4 khi x=1

hok tốt

nhớ tk

22 tháng 1 2018

Bài này mài kiếm đâu ra z mk hềnh như bài này ta lm oy mk

22 tháng 1 2018
làm r đạ may
29 tháng 10 2019

A = | x - 2015 | +| x - 2016 | 

A = | x - 2015 | + | 2016 - x | 

A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |

A = | x - 2015 | + | 2016 - x | \(\ge\)1

Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0

                       \(\Rightarrow\)x = 2015 hoặc x = 2016

Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016

29 tháng 10 2019

Bạn làm đc câu b ko

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

5 tháng 9 2018

b, tìm x,y biết |x-2018|+|y+2019|=0

\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)

vậy x=2018 ; y=-2019

5 tháng 9 2018

a) 

ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

b)

ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)

mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)

22 tháng 12 2021

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2019^2}{4}\)

Dấu = xảy ra khi \(x=y=\dfrac{2019}{2}\)

22 tháng 12 2021

\(P_{max}=1019090\)