K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2021

6.

\(cos\sqrt{x+\dfrac{\pi}{4}}\in\left[-1;1\right]\)

\(\Rightarrow-5\le5cos\sqrt{x+\dfrac{\pi}{4}}\le5\)

\(\Leftrightarrow-5\le y\le5\)

\(\Rightarrow miny=-5\Leftrightarrow cos\sqrt{x+\dfrac{\pi}{4}}=-1\Leftrightarrow\sqrt{x+\dfrac{\pi}{4}}=\pi+k2\pi\Leftrightarrow...\)

\(maxy=5\Leftrightarrow cos\sqrt{x+\dfrac{\pi}{4}}=1\Leftrightarrow\sqrt{x+\dfrac{\pi}{4}}=k2\pi\Leftrightarrow...\)

1 tháng 7 2021

\(y=-1-cos^2\left(2x+\dfrac{\pi}{3}\right)\)

\(=-\dfrac{3}{2}+\dfrac{1}{2}-cos^2\left(2x+\dfrac{\pi}{3}\right)\)

\(=-\dfrac{3}{2}-\dfrac{1}{2}\left[2cos^2\left(2x+\dfrac{\pi}{3}\right)-1\right]\)

\(=-\dfrac{3}{2}-\dfrac{1}{2}cos\left(4x+\dfrac{2\pi}{3}\right)\)

Vì \(cos\left(4x+\dfrac{2\pi}{3}\right)\in\left[-1;1\right]\)

\(\Rightarrow min=-\dfrac{3}{2}-\dfrac{1}{2}=-2\Leftrightarrow cos\left(4x+\dfrac{2\pi}{3}\right)=1\)

\(\Rightarrow max=-\dfrac{3}{2}+\dfrac{1}{2}=-1\Leftrightarrow cos\left(4x+\dfrac{2\pi}{3}\right)=-1\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

a, Do \(-1\le sin\alpha\le1\Rightarrow-0,3\le v_x=0,3sin\alpha\le0,3\)

Vậy giá trị lớn nhất của \(v_x\) là 0,3m/s và giá trị nhỏ nhất là -0,3m/s

b, Ta có đồ thị hàm số: 

Với góc \(\alpha\in\left(0;\dfrac{\pi}{2}\right)\) hoặc \(\alpha\in\left(\dfrac{3\pi}{2};2\pi\right)\) thì \(v_x\) tăng.

26 tháng 1 2022

Tham khảo

 y = 4sin √ x            ( đk x   ≥ 0 )
ta thấy: -1 ≤  sin √ x  ≤ 1
           <=> -4 ≤  4sin √ x  ≤ 4 
           <=> -4 ≤  y  ≤ 4 
max y  = 4 
dấu "=" xảy ra <=> sin √ x  = 1 
<=> √ x  =  pi/2 +2kpi   
<=>  x = (pi/2 +2kpi )^2
min y  = -4 
dấu "=" xảy ra <=> sin √ x  = -1 
<=> √ x  =  -pi/2 +2kpi   
<=>  x = (-pi/2 +2kpi)^2

26 tháng 1 2022

a. \(y=2cos\left(x+\dfrac{\pi}{3}\right)+3\)

Ta có: \(-1\le cos\alpha\le1\)

\(\Leftrightarrow-2\le2cos\alpha\le2\)

\(\Leftrightarrow-2+3\le2cos\alpha+3\le2+3\)

\(\Leftrightarrow1\le2cos\alpha+3\le5\)

Vậy y đạt GTNN ymin=1 khi \(\left[{}\begin{matrix}x=\dfrac{2}{3}\pi+k2\pi\\x=\dfrac{-4}{3}\pi+k2\pi\end{matrix}\right.\) và y đạt GTLN khi ymax=5 khi \(x=-\dfrac{\pi}{3}+k2\pi\)

18 tháng 1 2018

Đáp án C

NV
13 tháng 12 2020

\(y=\sqrt{3}sin2x-cos2x=2\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)=2sin\left(2x-\dfrac{\pi}{6}\right)\)

Do \(-1\le sin\left(2x-\dfrac{\pi}{6}\right)\le1\Rightarrow-2\le y\le2\)

\(y_{max}=2\) khi \(sin\left(2x-\dfrac{\pi}{6}\right)=1\)

\(y_{min}=-2\) khi \(sin\left(2x-\dfrac{\pi}{6}\right)=-1\)

24 tháng 3 2019

3 tháng 3 2017

29 tháng 5 2017

Suy ra: min y= -1; max y= 5

Đáp án C