Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $|y+5|\geq 0$ với mọi $y$
$\Rightarrow -2|y+5|\leq 0$ với mọi $y$
$\Rightarrow B=-2|y+5|-3\leq -3$
Vậy $B_{\max}=-3$ khi $y+5=0\Leftrightarrow y=-5$
--------------------
Vì $|x+3|\geq 0$ với mọi $x$
$\Rightarrow C=|x+3|-2\geq -2$
Vậy $C_{\min}=-2$ khi $x+3=0\Leftrightarrow x=-3$
-----------------
$|2x-1|\geq 0$ với mọi $x$
$\Rightarrow D=3|2x-1|+\frac{3}{2}\geq 3.0+\frac{3}{2}=\frac{3}{2}$
Vậy $D_{\min}=\frac{3}{2}$ khi $x=\frac{1}{2}$
a, Để A có GTNN thì |2.x-1/3| phải có GTNN
\(\Rightarrow\)|2.x-1/3|=0 \(\Leftrightarrow\)x=1/6
A có GTNN =107 khi x=1/6
b,(3x-5)^20 với mọi x
Để A có GTNN (3x-5)^2 phải có GTNN
\(\Rightarrow\)(3x-5)^2=0 \(\Leftrightarrow\)x=5/3
B co GTNN =-2015 khi x=5/3
c,Để C có GTLN khi |2x-3| phải có GTNN
\(\Rightarrow\)|2X-3|=0 \(\Leftrightarrow\)X=1,5
C co GTLN =1 khi x=1,5
đ,(4-2x)^2 0 với mọi x
Để D có GTLN khi (4-2x)^2 phải có GTNN
\(\Rightarrow\)(4-2x)^2=0 \(\Leftrightarrow\)x=2
D có GTLN =2016 khi x=2
Câu hỏi của Nguyễn Thảo Nguyên - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo!
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
\(D=\frac{4}{\left(2x-3\right)^2}+5\)
Để D đạt GTLN thì \(\frac{4}{\left(2x-3\right)^2}\) đạt GTLN
\(\Rightarrow2x-3=2\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=2,5\)
Vậy GTNN của D = 6