K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

nhìu dữ

a)3/2

b)-1/3

c)-5/6

d)0

e)-1/2

Bài 2

a=3

b=1/2

c=-1/3

d=0

e=9

f=-2/3

2 tháng 9 2017

mk ko làm rõ đâu  nhe

5 tháng 9 2016

bạn cho nhìu ứa nên mik trả lời vài câu nha:

1.

A. Vì |x- 1/2| >=0       =>       Amin =0   

B.Vì |x + 3/4| >=0   =>      B >= 2 (cộng 2 mà)   =>       Bmin =2     khi   x+ 3/4 =0 ....

các câu còn lại làm tương tự nhé

2 tháng 10 2016

a) |x+3/4| >/ 0 

|x+3/4| + 1/2 >/ 1/2 

MinA= 1/2  <=>  x+3/4 =0 hay x= -3/4

b) 2|2x-4/3|  >/  0 

2|2x-4/3| -1 >/ -1

Min= -1 <=>  2|2x-4/3| = 0 hay x=2/3

Bài tiếp théo:

a) -2|x+4| \< 0 

-2|x+4| +1 \<  1

MaxA=1  <=> -2|x+4| = 0 hay = -4

b) -3|x-5|   \<  0

-3|x-5| + 11/4  \<  11/4 

MaxB=11/4  <=>  -3|x-5| = 0 hay x=-5  

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

3 tháng 7 2016

a) A = 3 * /1-2x/-5

Ta có:

3|1-2x| >/ 0

=>  3|1-2x| -5 >/  -5

=> GTNN của A là -5

b)-B=3/4-_ /2_3x/

Chả hiểu

c)C=(2x^2+1)^4-3

Ta có: 2x^2 >/ 0

2x^2 +1 >/ 1

(2x^2 +1)^4 >/ 1^4

(2x^2 +1)^4 -3  >/ 1 -3

(2x^2 +1)^4   >/  -2

Vậy GTNN của C là -2

d) D=/x-1/2/ + (y+7)^2+11

Ta có: 

|x-1/2| >/  0                                (1)

và (y+7)^2   >/ 0

=>  (y+7)^2 +11   >/   11                (2)

Cộng vế với vế (1) và (2) ta được:

|x-1/2| + (y+7)^2 +11      >/      11

Vậy GTNN của D là 11 

4 tháng 7 2016

cam on nhe !vui

3 tháng 7 2018

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

3 tháng 7 2018

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)